Published
Monitoring Land Surface Temperature and Vegetation Dynamics in Response to Land Use Changes using Spatiotemporal Analysis in District Chiniot, Punjab Pakistan
Monitoreo de la temperatura superficial terrestre y las dinámicas de vegetación en respuesta a los cambios en el uso del suelo a través del análisis espacio-temporal, en el distrito de Chiniot, Punjab, Pakistán
DOI:
https://doi.org/10.15446/esrj.v29n1.116670Keywords:
Land Surface Temperature, Normalized Differentiated Vegetative Index, Land Use Land Cover, Normalized Differentiated Built-up Index, Land Satellite, Remote Sensing Data (en)Temperatura de la superficie terrestre, índice de vegetación de diferencia normalizada, uso del suelo/cobertura del suelo, índice de urbanización de diferencia normalizada, satélites terrestres, información de detección remota (es)
Downloads
Understanding the impact of land use and cover changes (LULC) on vegetation and built-up areas is crucial for local governments and communities in rapidly developing countries. The study was conducted in district Chiniot, Punjab, Pakistan. The present study aims to explore the relationship between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI). This study aims to investigate the relationship between land surface temperature (LST) patterns and changes in LULC due to urbanization in District Chiniot. Using Landsat 5 and 8 data, LST was computed and correlated with NDVI to assess vegetation changes. The results indicate a decrease in NDVI over the years, suggesting declining vegetation, and an increase in LST, indicating rising temperatures. Supervised classification revealed an increase in built-up areas and a decrease in vegetation, contributing to the rise in LST. These findings highlight the importance of effective land management strategies to mitigate the adverse impacts of urbanization on local environments.
El conocimiento del impacto del uso del suelo y los cambios en la cubierta de vegetación en las áreas urbanizadas es determinante para los gobiernos locales y para las comunidades de los países en desarrollo acelerado. Este estudio se realizó en el distrito de Chiniot, Punjab, Pakistan. El presente estudio busca explorar la relación entre la temperatura de la superficie terrestre y el índice de vegetación de diferencia normalizada. El trabajo se enfoca en investigar la relación entre los patrones de temperatura de la superficie terrestre y los cambios en la cubierta vegetal y en el uso del suelo debido a la urbanización del distrito de Chiniot. Con el uso de las bases de información Landsat 5 y Landsat 8, se computó y se correlacionó la temperatura de la superficie terrestre con el índice de vegetación de diferencia normalizada. Los resultados indican un decrecimiento en el índice de vegetación a través de los años, lo que sugiere una caída de la vegetación, un incremento en la temperatura de la superficie y por ende un proceso de aumento de las temperaturas. Una clasificación supervisada reveló un incremento de las áreas urbanizadas y un crecimiento de la vegetación, lo que contribuye al aumento de la temperatura de la superficie. Estos hallazgos resaltan la importancia de las estrategias de manejo efectivo de los suelos para mitigar los impactos adversos de la urbanización en los ambientes locales.
References
Acharya, T. D. and I. Yang (2015). "Exploring landsat 8." International Journal of IT, Engineering and Applied Sciences Research (IJIEASR) 4(4): 4-10.
Amanollahi, J., et al. (2016). "Urban heat evolution in a tropical area utilizing Landsat imagery." Atmospheric Research 167: 175-182. https://doi.org/10.1016/j.atmosres.2015.07.019
Attri, P., et al. (2015). "Remote sensing & GIS based approaches for LULC change detection—A review." Int. J. Curr. Eng. Technol 5: 3126-3137.
Benelli, G., et al. (2012). "An RFID-based toolbox for the study of under-and outside-water movement of pebbles on coarse-grained beaches." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(5): 1474-1482. https://doi.org/ 10.1109/JSTARS.2012.2196499
Chen, J., et al. (2002). "Evidence for strengthening of the tropical general circulation in the 1990s." Science 295(5556): 838-841. http://science.sciencemag.org/
Egorov, A. (2022). "Robust Stability Analysis of Time-Varying Delay Systems." IFAC-PapersOnLine 55(36): 210-215. https://doi.org/10.1016/j.ifacol.2022.11.359
Elsayed, I. S. (2012). "Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia." Middle-East Journal of Scientific Research 11(11): 1602-1613. https://doi.org/ 10.5829/idosi.mejsr.2012.11.11.1590
Ghouri, A. Y., et al. (2022). "Analytical Study of Land Surface Temperature with NDVI, NDBI, and NDBaI of Vehari District and Detect the UHI in Vehari City, Pakistan." Journal of Remote Sensing GIS & Technology 8(3): 12-25.
Gur, E., Palta, S., Ozel, H. B., Varol, T., Sevik, H., Cetin, M., & Kocan, N. (2024). Assessment of Climate Change Impact on Highland Areas in Kastamonu, Turkey. Anthropocene, 46, 100432. https://doi.org/10.1016/j.ancene.2024.100432
Hussain, S. and S. Karuppannan (2023). "Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan." Geology, Ecology, and Landscapes 7(1): 46-58. https://doi.org/10.1080/24749508.2021.1923272
Jiménez-Muñoz, J. C., et al. (2014). "Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data." IEEE Geoscience and remote sensing letters 11(10): 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
Li, H., et al. (2014). "Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China." Remote Sensing of Environment 142: 111-121. https://doi.org/10.1016/j.rse.2013.11.014
Li, Z.-L., et al. (2013). "Satellite-derived land surface temperature: Current status and perspectives." Remote sensing of environment 131: 14-37. https://doi.org/10.1016/j.rse.2012.12.008
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24.
Raghavan, M., et al. (2015). "Genomic evidence for the Pleistocene and recent population history of Native Americans." Science 349(6250): aab3884. http://dx.doi. org/10.1126/ science.aab3884
Rajeshwari, A. and N. Mani (2014). "Estimation of land surface temperature of Dindigul district using Landsat 8 data." International journal of research in engineering and technology 3(5): 122-126.
Rousta, I., et al. (2018). "Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018)." Sustainability 10(12): 4433. https://doi.org/10.3390/su10124433
Saleem, M. S., et al. (2020). "Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: a case study of Lahore, Faisalabad and Multan district." Environmental Science and Pollution Research 27(32): 39865-39878. https://doi.org/10.1007/s11356-020-10050-5
Schwaab, J., et al. (2021). "The role of urban trees in reducing land surface temperatures in European cities." Nature communications 12(1): 6763. https://doi.org/10.1038/s41467-021-26768-w
Solangi, G. S., et al. (2019). "Spatiotemporal dynamics of land surface temperature and its impact on the vegetation." Civil Engineering Journal 5(8): 1753-1763. http://dx.doi.org/10.28991/cej-2019-03091368
Solanky, V., et al. (2018). Land surface temperature estimation using remote sensing data. Hydrologic Modeling: Select Proceedings of ICWEES-2016, Springer. https://doi.org/10.1007/978-981-10-5801-1_24
Strahler, A. H. and A. Strahler (2013). Introducing physical geography, Wiley Hoboken, NJ, USA. ISBN: 978-1-118-29193-1
Ullah, S., Qiao, X. & Abbas, M. Addressing the impact of land use land cover changes on land surface temperature using machine learning algorithms. Sci Rep 14, 18746 (2024). https://doi.org/10.1038/s41598-024-68492-7
Waseem, S. and U. Khayyam (2019). "Loss of vegetative cover and increased land surface temperature: A case study of Islamabad, Pakistan." Journal of Cleaner Production 234: 972-983. https://doi.org/10.1016/j.jclepro.2019.06.228
World Health Organization. (1992). Cadmium: environmental aspects. World Health Organization.
Yang, J., et al. (2021). "Understanding land surface temperature impact factors based on local climate zones." Sustainable Cities and Society 69: 102818. https://doi.org/10.1016/j.scs.2021.102818
Yaseen, A. and A. Khan (2022). "Monitoring The Land Surface Temperature And Its Correlation With NDVI Of Chiniot By Using GIS Technology And Remote Sensing." https://doi.org/10.21203/rs.3.rs-1468097/v1
Yue, W., Xu, J., Tan, W., & Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing, 28(15), 3205–3226. doi:10.1080/01431160500306906
Zhang, M., et al. (2023). "Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China." Urban Climate 47: 101347. https://doi.org/10.1016/j.uclim.2022.101347
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.