Published
Geochemical data from Tanuma carbonate reservoir (Central Iraq) indicates higher terrigenous input and deoxygenation during Coniacian- Early Santonian age
Los datos geoquímicos del yacimiento carbonatado de Tanuma (Irak central) indican un mayor aporte terrígeno y desoxigenación durante la era Coniaciense-Santoniano temprano
DOI:
https://doi.org/10.15446/esrj.v29n2.117124Keywords:
Coniacian–Santonian, OAE3, major and trace elements, carbonate platform, shallow coastal facies, Central Iraq (en)Coniaciense-Santoniano, OAE3, elementos mayores y elementos traza, plataforma carbonatada, facies someras costeras, Central Iraq (es)
Downloads
A negative carbon isotopic excursion (CIE), typically overlaid atop a long term positive pattern, and significant environmental and climatic shifts are two characteristics that identify the Coniacian–Santonian, according to a variety of sedimentary records. But there is still no evidence to support the theory that variations in oceanic deoxygenation and continental weathering input in shallow seas could contribute to carbonate-platform crisis at low latitude. Here, carbonate content and carbonate-hosted elements from the Tanuma carbonate platform in Central Iraq (East Baghdad Oilfield; EB10 well) are analyzed for the Coniacian–Early Santonian transitional phase. The OAE3 boundary is marked by a clear increase in the elements that are most water insoluble (such as Al, Sc, Th, Ti, and all of the rare earth elements), which is followed by a modest increase or comparatively high-level values throughout the OAE CIE's negative phase. This implies that the improved terrigenous input may be connected to the rapid global warming that occurred throughout this time period. The increase in the abundance of these water-insoluble elements is immediately followed by an increase in the Mn, Ce, and Ce anomaly, which are then better values throughout the negative CIE interval. These data suggest that throughout this time period, shallow water experienced the process of deoxygenation and the growth in Mn (suboxic) condition. These events were probably related to increased nutrient input and continental weathering, which favored oxygen consumption as well as primary productivity. In CIE's recovery phase, the stratigraphically elevated insoluble in water elements exhibit a gradually declining trend in parallel to heightened redox proxy values, indicating a drop in the intensity of continental weathering and associated second the deoxygenation at shallow seas. In this case, increased recycling in bioessential nutrients or a slowing of the ocean's circulation could have contributed to deoxygenation. The interdependent connection among carbonate content, geochemical data, and biotic changes indicates that:1- the Tanuma carbonate platform probably noticed a minor degradation around the OAE3 boundary period due to the beginning of increasing terrigenous input and the deoxygenation at shallow seas.2- during the CIE's negative phase, the heightened terrigenous input and deoxygenation probably contributed significantly to the more serious situation facing benthic carbonate producers.
Los eventos anóxicos oceánicos se caracterization por extensas deposiciones y acumulaciones de sedimentos pelágicos ricos en materia orgánica, tales como shales negros, y son considerados mecanismos claves para el enterramiento de carbón orgánico y, en estos casos, almacenamiento del superinvernadero del Cretácico. Una excursión negativa isotópica del carbono (CIE, del inglés carbon isotopic excursion, típicamente sobrepuesta sobre un patrón positivo de largo período, junto con los cambios significativos climáticos y ambientales son características que identifican el período entre el Coniaciano y el Santoniano, de acuerdo con una amplia variedad de registros sedimentarios. Pero no hay evidencia que fundamente la teoría de que las variaciones en la desoxigenación y la meteorización continental en aguas marítimas someras pudieron contribuir a la crisis de las plataformas carbonatadas en las bajas latitudes. En este estudio se analiza el contenido de carbonato y los elementos alojados en carbonato de la plataforma de Tanuma, en el centro de Irak (campo petrolífero de Bagdad Oriental; pozo EB10), para la fase de transición Coniaciense-Santoniano temprano. El límite OAE3 está marcado por un claro aumento en los elementos que son más insolubles en agua (como Al, Sc, Th, Ti y todos los elementos de tierras raras), seguido de un ligero aumento o niveles relativamente altos a lo largo de la fase negativa del CIE OAE. Estos resultados sugieren que el aumento de la entrada terrígena probablemente estuvo relacionado con el rápido calentamiento global durante el período Coniaciense-Santoniano, lo que contribuyó a la degradación generalizada de la plataforma carbonatada. El aumento en la abundancia de estos elementos insolubles en agua es seguido inmediatamente por un aumento de Mn, Ce y Ce anómalo, que luego son mejores valores a lo largo del intervalo CIE negativo. Estos hallazgos se alinean con tendencias de desoxigenación similares observadas en plataformas carbonatadas contemporáneas en todo Egipto y el sur de Tetis, lo que indica un evento anóxico oceánico potencialmente generalizado durante el intervalo Coniaciense-Santoniano. Estos eventos probablemente estuvieron relacionados con el aumento de la entrada de nutrientes y la meteorización continental, que favorecieron el consumo de oxígeno, así como la productividad primaria. En la fase de recuperación del CIE, los elementos insolubles en agua estratigráficamente elevados exhiben una tendencia gradualmente decreciente en paralelo al aumento de los valores proxy redox, lo que indica una caída en la intensidad de la meteorización continental y la segunda desoxigenación asociada en mares poco profundos. En este caso, el aumento del reciclaje en nutrientes bioesenciales o una desaceleración de la circulación oceánica podrían haber contribuido a la desoxigenación. La conexión interdependiente entre el contenido de carbonato, los datos geoquímicos y los cambios bióticos indican que, 1. La plataforma carbonatada de Tanuma probablemente notó una degradación menor alrededor del período límite OAE3 debido al comienzo del aumento de la entrada terrígena y la desoxigenación de mares poco profundos. 2- Durante la fase negativa del CIE, la mayor entrada terrígena y la desoxigenación probablemente contribuyeron significativamente a la situación más grave que enfrentan los productores de carbonato bentónico.
References
Abdel-Fattah, M. I., Mahdi, A. Q., Theyab, M. A., Pigott, J. D., Abd-Allah, Z. M., & Radwan, A. E. (2022). Lithofacies classification and sequence stratigraphic description as a guide for the prediction and distribution of carbonate reservoir quality: a case study of the Upper Cretaceous Khasib Formation (East Baghdad oilfield, central Iraq). Journal of Petroleum Science and Engineering, 209, 109835. https://doi.org/10.1016/j.petrol.2021.109835
Al-Ameri, T. K. & Al-Obaydi, R. Y. (2011). Cretaceous petroleum system of the Khasib and Tannuma oil reservoir, East Baghdad oil field, Iraq. Arabian Journal Geosciences, 4, 915–932. https://doi.org/10.1007/s12517-009-0115-4
Al-Ameri, T. (2011). Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Marine and Petroleum Geology, 28(4): 880-894. DOI:10.1016/j.marpetgeo.2010.06.003
Al- Hamdani, A.M. (1986). Stratigraphy and geochemistry of Khasib, Tanuma and Saadi Formations in East Baghdad Oilfield, Central Iraq. Ph.D. Thesis (unpublished), College of Science, University of Baghdad.
Algouti, A., Algouti, A., Hadach, F., Farah, A. & Aydda, A. (2023). Upper Cretaceous deposits on the Northern side of the High Atlas Range of Marrakesh (Morocco): tectonics, sequence stratigraphy and paleogeographic evolution. Boletin de la Sociedad Geologica Mexicana, 74 (1). https://doi.org/10.18268/bsgm2022v74n1a101121
Ali, R.A. & Jassim, H.K. (2023). Sedimentology and geochemistry of Zubair Formation sandstone reservoir, East Baghdad Oilfield, central Iraq. Kuwait Journal of Science, 50(3), 427-437. https://doi.org/10.1016/j.kjs.2023.01.006
Ali, R.A., (2023a). Geochemistry and paleoredox conditions of the carbonate reservoir Khasib Formation in East Baghdad Oilfield-Central Iraq. Journal of Petroleum Research and Studies, 41, 16-36. DOI: https://doi.org/10.52716/jprs.v13i4.757
Ali, R.A. (2023b). Dolomitization mechanism of Pila Spi formation (middle- late eocene) in the high folded zone, Northern Iraq. Kuwait Journal of Science, 50(2), 105-114. https://doi.org/10.1016/j.kjs.2023.02.015
Ali, H., Maziqa, F.H. & Al-Owaidi, M. (2022). A stratigraphic analysis of the Khasib, Tanuma and Sa’di Formations in the Majnoon Oil Field, Southern Iraq. Bulletin of the Geological Society of Malaysia, 73(1):163-169. http://dx.doi.org/10.7186/bgsm73202213
Aqrawi, A.A. (1996). Carbonate-siliciclastic sediments of the Upper Cretaceous (Khasib, Tanuma and Sa'di Formations) of the Mesopotamian Basin. Marine and Petroleum Geology, 13(7), 781-790. https://doi.org/10.1016/0264-8172(96)00022-0
Andrieu, S., Krencker, F.-N. & Bodin, S. (2022). Anatomy of a platform margin during a carbonate factory collapse: implications for the sedimentary record and sequence stratigraphic interpretation of poisoning events. Journal of the Geological Society, 179. https://doi.org/10.1144/jgs2022-005
Bauer, J., Kuss, H-J. & Steuber, T. (2003). Sequence architecture and carbonate platform configuration (Late Cenomanian–Santonian), Sinai, Egypt. Sedimentology, 50(3): 387 – 414. DOI:10.1046/j.1365-3091.2003.00549.x
Blättler, C., Jenkyns, H.C., Reynard, L. & Henderson, G.M. (2011). Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth and Planetary Science Letters, 309(1):77-88. DOI:10.1016/j.epsl.2011.06.029
Bomou, B., Adatte, T., Kaenel, E.D., Spangenberg, J., Gertsch, B., and Föllmi, K.B. (2013). Is the Coniacian-Santonian OAE3 a real and global anoxic event? Insights from Spain, Texas and Egypt, EGU2013-9898, 2013: EGU General Assembly, Vienna, 15.
Bomou, B., Adatte, T. & Spangenberg, J.E. (2023). Palaeoenvironmental and palaeontological study of the Gabal Ekma Section (Egypt) throughout the Coniacian-Santonian boundary. Advances in Science, Technology& Innovation, 291- 304. https://www.springer.com/series/15883 DOI: https://doi.org/10.1007/978-3-030-95637-0_11
Brazier, J.M., Suan, G., Tacail, T., Simon, L., Martin, J.E., Mattioli, E. & Baiter, V. (2015). Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth and Planetary Science Letters, 411, 164–176. DOI:10.1016/j.epsl.2014.11.028
Cao, H., Kaufman, A.J., Shan, X., Cui, H. & Zhang, G. (2016). Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 152-163. https://doi.org/10.1016/j.palaeo.2016.02.041
Cao, C., Liu, X.-M., Bataille, C.P. & Liu, C. (2020). What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments. Chemical Geology, 532, 119413. https://doi.org/10.1016/j.chemgeo.2019.119413
Cao, H., He, W., Chen, F., Shan, X., Kong, D. & Hou, Q. (2021). Integrated chemostratigraphy (δ13C-δ34S-δ15N) constrains Cretaceous lacustrine anoxic events triggered by marine sulfate input. Chemical Geology, 559, 119912. https://doi.org/10.1016/j.chemgeo.2020.119912
Chamberlain, C. P., Wan, X., Graham, S.A., Carroll, A.R., Doebbert, A.C., Sageman, B.B., Blisniuk, P.,Kent-Corson, M.L., Wang, Z. & Chengshan, W. (2013). Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385, 106–124. https://doi.org/10.1016/j.palaeo.2012.03.020
Chen, Xi, Wang, C., Wu, H., Kuhnt, W., Jia, J., Holbourn, A., Zhang, L. & Ma, C. (2015). Orbitally forced sea-level changes in the upper Turonian–lower Coniacian of the Tethyan Himalaya, southern Tibet. Cretaceous Research, 56, 691-701. https://doi.org/10.1016/j.cretres.2014.07.010
Chenot, E., Deconinck, J-F, Pucéat, E. & Pellenard, P. (2018). Continental weathering as a driver of Late Cretaceous cooling: new insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the Boreal realm. Global and Planetary Change, 162, 292-312. https://doi.org/10.1016/j.gloplacha.2018.01.016
Clarkson, M. O., Stirling, C. H., Jenkyns, H. C., Dickson, A. J., Porcelli, D., Moy, C. M., Pogge von Strandmann, P.A.E., Cooke, I.R. & Lenton, T.M. (2018). Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 115(12), 2918–2923. https:// doi.org/10.1073/pnas.1715278115
Cohen, A.S., Coe, A.L., Harding, S.M. & Schwark, L. (2004). Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology, 32, 157–160.DOI: https://doi.org/10.1130/G20158.1
Cumming, V.M., Selby, D. & Lillis, P.G. (2012). Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering. Earth and Planetary Science Letters, 359–360: 194-205. https://doi.org/10.1016/j.epsl.2012.10.012
Dameron, S.N., Leckie, R.M., Clark, K., MacLeod, K.G., Thomas, D.J. & Lees, J.A. (2017). Extinction, dissolution, and possible ocean acidification prior to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 433-454. https://doi.org/10.1016/j.palaeo.2017.06.032
Deng, Y., Ren, J., Guo, Q., Cao, J., Wang, H. & Liu, C. (2017). Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacifc. Scientific Reports, 7: 16539. DOI:10.1038/s41598-017-16379-1
DeMaster, D. (2003). The diagenesis of biogenic silica: Chemical transformations occurring in the water column, seabed, and crust. Treatise on Geochemistry, 7, 87-98. https://doi.org/10.1016/B0-08-043751-6/07095-X
Fayadh, A.H. & Nasser, M.E., (2018). 3D geological model for Khasib, Tanuma, and Sa'di formations of Halfaya Oil Field in Missan Governorate-Southern Iraq. Iraqi Journal of Science, 59(2B), 875-885 DOI:10.24996/ijs.2018.59.2B.8
Feng, Z.-q., Jia, C.-z., Xie, X.-n., Zhang, S., Feng, Z.-h. & Cross, T.A. (2010). Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Research, 22, 79-95. DOI:10.1111/j.1365-2117.2009.00445.x
Franchi, F. (2018). Petrographic and geochemical characterization of the Lower Transvaal Supergroup stromatolitic dolostones (Kanye Basin, Botswana). Precambrian Research, 310. DOI:10.1016/j.precamres.2018.02.018
Friedrich, O., Norris, R. D., & Erbacher, J. (2012). Evolution of middle to late Cretaceous oceans – A 55 my record of Earth’s temperature and carbon cycle. Geology, 40(2), 107–110. https://doi.org/10.1130/g32701.1
Gale, A.S., Kennedy, W.J., Lees, J.A., Petrizzo, M.R. & Walaszczyk, I. (2007). An integrated study (inoceramid bivalves, ammonites, calcareous nannofossils, planktonic foraminifera, stable carbon isotopes) of the Ten Mile Creek section, Lancaster, Dallas County, north Texas, a candidate global boundary Stratotype Section and point for the base of the Santonian Stage. Acta Geologica Polonica, 57 (2), 113-160.
Gharib, A. F., Ismael, J. I., Alatroshe, R. K., Farhan, H. N., Abdel-Fattah, M. I., & Pigott, J. D. (2024). Organic matter characteristics and hydrocarbon generation potential of the Middle Jurassic–Lower Cretaceous succession in the Mesopotamian Foredeep Basin, Iraq. International Journal of Earth Sciences, 113(8), 2163-2187. http://dx.doi.org/10.1007/s00531-024-02434-6
Haddad, S.N. & Amin, M.A. (2007). Mid-Turonian–early Campanian sequence stratigraphy of northeast Iraq. GeoArabia, 12 (2), 135–176. https://doi.org/10.2113/geoarabia1202135
Haq, B.U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007
Han, Z., Hu, X., Hu, Z., Jenkyns, H.C. & Su, T. (2022). Geochemical evidence from the Kioto Carbonate Platform (Tibet) reveals enhanced terrigenous input and deoxygenation during the early Toarcian. Global and Planetary Change, 215,103887. https://doi.org/10.1016/j.gloplacha.2022.103887
Hood, A.V.S., Planavsky, N.J., Wallace, M.W. & Wang, X. (2018). The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochimica et Cosmochimica Acta, 232, 265–287. DOI:10.1016/j.gca.2018.04.022
Hu, X., Wagreich, M. & Yilmaz, I. O. (2012). Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38, 1–6. DOI:10.1016/j.cretres.2012.04.012
Hu, J.F., Peng, P.A., Liu, M.Y., Xi, D.P., Song, J.Z., Wan, X.Q. & Wang, C.S. (2015). Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers. Scientific Reports, 5, 9508. DOI:10.1038/srep09508
Huber, B. T., Norris, R. D., & MacLeod, K. G. (2002). Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30, 123–126. https://doi.org/10.1130/0091-7613(2002)0302.0.co;2
Huber, B. T., MacLeod, K.G., Watkins, D.K. & Coffin, M.F. (2018). The rise and fall of the Cretaceous hot greenhouse climate. Global and Planetary Change, 1-23. https://doi.org/10.1016/j.gloplacha.2018.04.004
Immenhauser, A. (2005). High-rate sea-level change during the Mesozoic: New approaches to an old problem. Sedimentary Geology, 175, 277 – 296. doi:10.1016/j.sedgeo.2004.12.016
Jarvis, I., El Asmi, A.M., Moody, R.T.J. & Cabrera, S. (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography, Palaeoclimatology, Palaeoecology, 188(3-4): 215-248. https://doi.org/10.1016/S0031-0182(02)00578-3
Jenkyns, H.C. (2003). Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. The Royal Society, London, 361, 1885–1916. DOI: 10.1098/rsta.2003.1240
Jenkyns, H. C. (1980). Cretaceous anoxic events: from continents to oceans. Journal of Geological Society, 137(2):171-188. DOI:10.1144/gsjgs.137.2.0171
Jenkyns, H.C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004. https://doi.org/10.1029/2009GC002788.
Jones, C. E. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112–149. DOI:10.2475/ajs.301.2.112
Jones, M. M., Ibarra, D. E., Gao, Y., Sageman, B. B., Selby, D., Chamberlain, C. P. & Graham, S. A. (2018). Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake. Earth and Planetary Science Letters, 484, 41-52. DOI:10.1016/j.epsl.2017.11.046
Kalanat, B., Davtalab, E. & Vahidinia, M. (2021). The oxic Coniacian-Santonian interval in the Kopet-Dagh Basin (NE Iran): Carbon isotope and benthic-planktic foraminiferal assemblages at the time of the last Cretaceous OAE. Palaeogeography Palaeoclimatology Palaeoecology, 588(8):110817. DOI:10.1016/j.palaeo.2021.110817
Kaya, M.Y., Dupont‐Nivet, G., Proust, J-N, Roperch, P., Meijer, N., Frieling, J., Fioroni, C., Altiner, S.O., Stoica, M., Aminov, J., Mamtimin, M. & Guo, Z. (2020). Cretaceous evolution of the Central Asian Proto‐Paratethys Sea: Tectonic, eustatic, and climatic controls. AGU Advancing Earth and Space Science, 39(9), 1- 27. https://doi.org/10.1029/2019TC005983
Keller, G. (2008). Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29(5-6), 754-771. https://doi.org/10.1016/j.cretres.2008.05.030
Korbar, T., Glumac, B., Tešović, B. C., & Cadieux, S. B. (2012). Response of a carbonate platform to the Cenomanian-Turonian drowning and OAE 2: A case study from the Adriatic platform (Dalmatia, Croatia) carbonate platform response to the Cenomanian-Turonian drowning and OAE 2. Journal of Sedimentary Research, 82(3), 163–176. https://doi.org/10.2110/jsr.2012/17
Labandeira, C., Rodríguez-Tovar, F.J. & Uchman, A. (2016). The End-Cretaceous Extinction and Ecosystem Change. Springer Link, in Book (The Trace-Fossil Record of Major Evolutionary Events), V. 2: Mesozoic and Cenozoic, 265–300. DOI:10.1007/978-94-017-9597-5_5
Lan, C. & Long, X. (2023). Redox-stratified seawater during the GOE: Evidences from rare earth elemental and C-O isotopic compositions of Paleoproterozoic BIF and carbonate rocks from the Taihua Group, North China Craton. Ore Geology Reviews, 157, 105424. https://doi.org/10.1016/j.oregeorev.2023.105424
Lash, G.G., 2018. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA. Marine and Petroleum Geology, 91, 470e479. https://doi.org/10.1016/j.marpetgeo.2018.01.032
Lawa, F.A.A., Mohammed, I.Q., Farouk, S., Ahmad, F., Faris, M., Tanner, L.H. & El-Khahtany, K., (2023). Stratigraphic architecture of the Tethyan Cenomanian-Turonian succession and OAE2 in the Dokan Area, Kurdistan Region, northeast Iraq. Journal of African Earth Sciences, 207(2):105064. DOI:10.1016/j.jafrearsci.2023.105064
Lawrence, M. & Kamber, B. (2006). The behaviour of the rare earth elements during estuarine mixing--revisited. Marine Chemistry, 100. DOI: 147-161. 10.1016/j.marchem.2005.11.007.
Leckie, R. M., Bralower, T. J. & Cashman, R. (2002). Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, 131–1329. DOI:10.1029/2001PA000623
Li, X.Y., Wang, E-J., Wu, C-Q., Zhao, D-H., Hua, B., Zhang, Z-W., Xu, J-H. & Jin, Z-R. (2022). The redox-conditions controlled manganese carbonate mineralization in the Late Paleozoic Qiaerlong deep basin, Western Kunlun Mountains, China. Ore Geology Reviews, 147, 104993. https://doi.org/10.1016/j.oregeorev.2022.104993
Loges, A., Wagner, T., Barth, M.G. & Bau, M. (2012). Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water–mineral interaction. Geochimica et Cosmochimica Acta, 86:296–317. DOI:10.1016/j.gca.2012.03.017
Lowery, C.M., Leckie, R.M. & Sageman, B.B. (2017). Micropaleontological evidence for redox changes in the OAE3 interval of the US Western Interior: Global vs. local processes. Cretaceous Research, 69, 34-48. https://doi.org/10.1016/j.cretres.2016.08.011
Lu, Z.L., Jenkyns, H.C. & Rickaby, R.E.M. (2010). Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geological Society of America, 38(12), 1107–1110. doi: 10.1130/G31145.1
MacLeod, K. G., Huber, B. T., & Isaza-Londoño, C. (2005). North Atlantic warming during global cooling at the end of the Cretaceous. Geology, 33, 437–440. https://doi.org/10.1130/G21466.1
Mahdi, A. Q., Al-Beyati, F. M., Al Tarif, A. M., Shendi, E. A. H., & Abdel-Fattah, M. I. (2019). Palynofacies and paleoenvironment investigation of the hauterivian–early aptian Ratawi and Zubair formations, Balad oilfield, Central Iraq. Tikrit Journal of Pure Science, 24(6), 74-80. http://dx.doi.org/10.25130/tjps.24.2019.111
Mahdi, A. Q., Abdel-Fattah, M. I., & Hamdan, H. A. (2022). An integrated geochemical analysis, basin modeling, and palynofacies analysis for characterizing mixed organic-rich carbonate and shale rocks in Mesopotamian Basin, Iraq: Insights for multisource rocks evaluation. Journal of Petroleum Science and Engineering, 216, 110832. http://dx.doi.org/10.1016/j.petrol.2022.110832
Mansour, A., Gentzis, T., Wagreich, M., Tahoun, S.S. & Elewa, A.M.T. (2020a). Short-term sea level changes of the Upper Cretaceous carbonates: Calibration between palynomorphs composition, inorganic geochemistry, and stable isotopes. Minerals, 10, 1099; doi:10.3390/min10121099
Mansour, A., Wagreich, M., Gentzis, T., Ocubalidet, S., Tahoun, S.S. & Elewa, A.M.T. (2020b). Depositional and organic carbon-controlled regimes during the Coniacian Santonian event: First results from the southern Tethys (Egypt). Marine and Petroleum Geology, 115, 10428. https://doi.org/10.1016/j.marpetgeo.2020.104285
Mansour, A., Gentzis, T., Ied, I.M. & Ahmed, M.S. (2022). Paleoenvironmental conditions and factors controlling organic carbon accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and inorganic geochemical approach. Minerals, 12, 1213. https://doi.org/10.3390/min12101213
Mansour, A. & Wagreich, M. (2022). Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian-Santonian OAE3 subevents and fundamental variations in organic carbon deposition. Earth- Science Reviews, 229, 104022. https://doi.org/10.1016/j.earscirev.2022.104022
Mansour, A. & Wagreich, M. (2023). An overview of the Cretaceous oceanic anoxic events (OAEs) in Egypt, southern Tethys. Geological Society London Special Publications, 545(1). DOI:10.1144/SP545-2023-104
März, C., Beckmann, B., Franke, C., Vogt, C., Wagner, T. & Kasten, S. (2009). Geochemical environment of the Coniacian–Santonian western tropical Atlantic at Demerara Rise. Palaeogeography Palaeoclimatology Palaeoecology, 273(3-4), 286-301. https://doi.org/10.1016/j.palaeo.2008.05.004
Mohammed, I.Q., Farouk, S., Mousa, A., Lawa, F.A., 2022. Lithofacies types, mineralogical assemblages and depositional model of the Maastrichtian–Danian successions in the Western Desert of Iraq and eastern Jordan. Journal of African Earth Sciences, 186, 104397. https://doi.org/10.1016/j.jafrearsci.2021.104397
Munier, T., Riquier, L., Révillon, S., Brumsack, H-J, Hasler, C., Boudouma, O. & François, B. (2023). Climatic and weathering conditions in southern high latitudes during the Turonian-Santonian interval: New insights from IODP Site U1512 (Bight Basin, Southern Australia). Palaeogeography Palaeoclimatology Palaeoecology, 613, 111413 (18p.) https://doi.org/10.1016/j.palaeo.2023.111413
O’Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schoulten, S., Lunt & D. J. (2017). Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172, 224–247. https://doi. org/10.1016/j.earscirev.2017.07.012
Ozyurt, M., Kirmaci, M. Z., Al-Aasm, I., Hollis, C., Tasli, K. & Kandemir, R. (2020). REE characteristics of Lower Cretaceous limestone succession in Gümüşhane, NE Turkey: Implications for ocean paleoredox conditions and diagenetic alteration. Minerals,10 (8) 683. https://doi.org/10.3390/min10080683
Petrizzo, M.R., Berrocoso, A.J., Falzoni, F. & Huber, B. (2017). The Coniacian-Santonian sedimentary record in southern Tanzania (Ruvuma Basin, East Africa): Planktonic foraminiferal evolutionary, geochemical and palaeoceanographic patterns. Sedimentology, 64(1). DOI:10.1111/sed.12331
Petrizzo, M.R., MacLeod, K.G., Watkins, D.K., Wolfgring, E. & Huber, B.T. (2022). Late Cretaceous paleoceanographic evolution and the onset of cooling in the Santonian at southern high latitudes (IODP Site U1513, SE Indian Ocean). AGU Advancing Earth and Space Science, 37(1), 1- 38. https://doi.org/10.1029/2021PA004353
Peucker-Ehrenbrink, B. & Ravizza, G. (2000). The marine osmium isotope record. Terra Nova, 12(5):205 – 219. http://dx.doi.org/10.1046/j.1365-3121.2000.00295.x
Phelps, R.M., Kerans, C., Da-Gama, R., Jeremiah, J., Hull, D. & Loucks, R.L. (2015). Response and recovery of the Comanche carbonate platform surrounding multiple Cretaceous oceanic anoxic events, northern Gulf of Mexico. Cretaceous Research, 54, 117-144. https://doi.org/10.1016/j.cretres.2014.09.002
Pohl, A., Donnadieu, Y., Godderis, Y., Lanteaume, C., Hairabian, A., Frau, C., Michel, J., Laugie, M., Reijmer, J.J.G. & Scotese, R. (2020). Carbonate platform production during the Cretaceous. GSA Bulletin, 132 (11-12): 2606–2610.https://doi.org/10.1130/B35680.1
Remin, Z. (2004). Biostratigraphy of the Santonian in the SW margin of the Holy Cross Mountains near Lipnik, a potential reference section for extra -Carpathian Poland. Acta Geologica Polonica, 54(4) 587-596.
Sachse, V.F., Littke, R., Jabour, H., Schümann, T. & Kluth, O. (2012). Late Cretaceous (Late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Marine and Petroleum Geology, 29, 35-49. https://doi.org/10.1016/j.marpetgeo.2011.08.014
Sadooni, F.N. (2004). Stratigraphy, depositional setting and reservoir characteristics of Turonian - Campanian carbonates in Central Iraq. Journal of Petroleum Geology, 27 (4), 357- 371. DOI:10.1111/j.1747-5457.2004.tb00063.x
Schlanger, S. O. & Jenkyns, H. C. (1976). Cretaceous Oceanic Anoxic Events: Causes and consequences. Geologie en Mijnbouw, 55(3), 179- 184.
Smith, B. P., Kerans, C. & Fischer, W. W. (2021). A redox-based model for carbonate platform drowning and Ocean Anoxic Events. Geophysical Research Letters, 48, e2021GL093048. https://doi.org/10.1029/2021GL093048
Steuber, T., Loser, H., Mutterlose, J. & Parente, M. (2023). Biogeodynamics of Cretaceous marine carbonate production. Earth-Science Reviews, 238, 104341. https://doi.org/10.1016/j.earscirev.2023.104341
Sun, W., Li, C-Y., Hao, X-L., Ling, M.X., Ireland, T.R., Ding, X. & Fan, W.M. (2016). Oceanic anoxic events, subduction style and molybdenum mineralization. Solid Earth Sciences, 1(2), 64-73. https://doi.org/10.1016/j.sesci.2015.11.001
Su, N., Yang, S., Guo, Y., Yue, W., Wang, X., Yin P., & Huang, X. (2017). Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochemistry, Geophysics, Geosystems, 18(3) DOI:10.1002/2016GC006659
Taylor, S. R. & McLennan, S. H. (1985). The geochemical evolution of the continental crust. Review Geophysics, 33, 241-265. https://doi.org/10.1029/95RG00262
Tessin, A., Hendy, I., Sheldon, N. & Sageman, B. (2015). Redox-controlled preservation of organic matter during “OAE 3” within the Western Interior Seaway. Paleoceanography, 30, 702–717, doi:10.1002/2014PA002729.
Tostevin, R. (2021). Cerium Anomalies and Paleoredox. (Elements in Geochemical Tracers in Earth Systems Science). Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108847223
Tsikos, H. Jenkyns, H.C., Walsworth-Bell, B., Petrizzo, M.R., Forster, A., Kolonic, S., Erba, E., Silva, I.P., Baas, M., Wagner, T. & Sinninghe-Damste, J.S. (2004). Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: Correlation and implications based on three key localities. Journal of Geological Society, 161, 711–719. DOI:10.1144/0016-7649Er161-4
Wagreich, M. (2009). Coniacian–Santonian Oceanic red beds and their link to Oceanic Anoxic Event 3. in Cretaceous Ocean Redbeds: Stratigraphy, Composition, Origins, and Paleoceanographic and Paleoclimatic Significance (eds. Hu, X., Wang, C., Scott, R. W., Wagreich, M. & Jansa, L.) 235–242 (SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/sepmsp.091.
Wagreich, M. (2012). ‘OAE 3’—regional Atlantic organic carbon burial during the Coniacian–Santonian. Climate of the Past, 8, 1447–1455. https://doi.org/10.5194/cp-8-1447-2012
Wagreich, M. & Mansour, A. (2022). The Coniacian-Santonian Oceanic Anoxic Event OAE3 - global correlation of subevents. EGU22, the 24th EGU General Assembly, held 23-27 May, 2022 in Vienna, Austria. https://ui.adsabs.harvard.edu/link_gateway/2022EGUGA.2411382W/doi:10.5194/egusphere-egu22-11382
Wang, T., Ramezani, J., Wang, C., Wu, H., He, H. & Bowring, S.A. (2016). High-precision U–Pb 755 geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and 756 geomagnetic polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 446, 37-44. DOI:10.1016/j.epsl.2016.04.007
Wendler, I., Wendler, J., Gräfe, K.-U., Lehmann, J. & Willems, H. (2009). Turonian to Santonian carbon isotope data from the Tethys Himalaya, southern Tibet. Cretaceous Research, 30(4), 961-979. https://doi.org/10.1016/j.cretres.2009.02.010
Wendler, I. (2013). A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth-Science Reviews, 126, 116–146. https://doi.org/10.1016/j.earscirev.2013.08.003
Wu, H., Zhang, S., Jiang, G., Hinnov, L., Yang, T., Li, H., Wan, X. & Wang, C. (2013). Astrochronology of the 762 Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System. Palaeogeography Palaeoclimatology Palaeoecology, 385, 55-70. DOI:10.1016/j.palaeo.2012.09.004
Xu, Y., Li, D., Gao, Y., Li, M., Sun, L., Zhang, S., Wang, C. & Shen, Y. (2023). Multiple S-isotopic evidence for seawater incursions during the deposition of the upper Cretaceous source rocks in the Songliao Basin, northeastern China. Chemical Geology, 642, 121790. https://doi.org/10.1016/j.chemgeo.2023.121790
Yilmaz, I.O., Cook, T.D., Hosgor, I. & Wagreich, M. (2018). The upper Coniacian to upper Santonian drowned Arabian carbonate platform, the Mardin-Mazidag area, SE Turkey: Sedimentological, stratigraphic, and ichthyofaunal records. Cretaceous Research, 84, 153-167. https://doi.org/10.1016/j.cretres.2017.09.012
Zhao, M. & Zheng, Y-F. (2014). Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones. Geochimica et Cosmochimica Acta, 141:508–531. DOI:10.1016/j.gca.2014.07.001
Zhang, K. & Shields, G.A. (2022). Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Science Reviews, 229, 104015. https://doi.org/10.1016/j.earscirev.2022.104015
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











