Published

2025-10-29

Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24

Estudio de la relación entre las anomalías del Contenido Total de Electrones del Sistema de Posicionamiento Global y los eventos de terremoto en Tailandia durante el Ciclo Solar 24

DOI:

https://doi.org/10.15446/esrj.v29n3.117195

Keywords:

Total electron content, Earthquake events, Solar cycle 24, Ionosphere and seismic activities, Correlation coefficient (en)
Contenido Total de Electrones, terremotos, Ciclo solar 24, ionósfera y actividades sísmicas, Coeficiente de correlación (es)

Downloads

Authors

This study investigates ionospheric Total Electron Content (TEC) anomalies in relation to earthquake events in Thailand from 2007 to 2020, encompassing Solar Cycle 24. TEC data were obtained from three sources: the Global Positioning System (GPS), the International GNSS Service (IGS), and the International Reference Ionosphere (IRI), and were compared to 473 earthquakes (Mw ≥ 3.0). While earthquake magnitudes below Mw 5.0 did not exhibit a clear correlation, earthquake events of Mw 5.0 or higher reflected in moderate negative correlation coefficients for GPS TEC, IGS TEC, and IRI TEC (-0.495, -0.501, and -0.303, respectively). Furthermore, a positive correlation coefficient (0.611) was found between Mw ≥ 5.0 earthquakes and geomagnetic storms with the Kp index. However, focusing specifically on geomagnetic storms and TEC variations on the day of an earthquake, no significant relationship was detected across GPS, IGS, and IRI data. Nevertheless, further research is needed to clarify the link between seismic activity and TEC fluctuations, potentially through alternative approaches or targeted case studies. This is especially important given the limited number of earthquakes above a magnitude of 5.0 in our study area, which restricts the available sample size.

Este estudio investiga las anomalías ionosféricas del Contenido Total de Electrones (TEC) en relación con los eventos de terremoto en Tailandia entre 2007 y 2020, período del Ciclo Solar 24. La información del TEC se obtuvo de tres fuentes: Sistema de Posición Global (GPS), servicio internacional de GNSS (IGS) y el modelo de Referencia Internacional de Ionosfera, y se cotejó con 473 terremotos (Mw ≥ 3.0). Mientras que las magnitudes menores a 5.0 no presentan una clara correlación, los eventos de terremoto iguales o superiores a 5.0 reflejaron coeficientes de correlación negativa moderada para los sistemas GPS TEC, IGS TEC, e IRI TEC (-0.495, -0.501, y -0.303, respectivamente). Además, un coeficiente de correlación positiva (0.611) se encontró en los terremotos de magnitud igual o superior a 5.0. Sin embargo, en el caso específico de tormentas geomagnéticas frente a variaciones del TEC en el día de un terremoto no se detectó una relación significativa en la información del GPS, IGS e IRI. Se necesita más investigación para clarificar los vínculos entre la actividad sísmica y las fluctuaciones del TEC, potencialmente a través de acercamientos alternativos o casos de estudio específicos. Esto es especialmente importante debido al número limitado de terremotos con magnitud superior a 5.0 en esta área de estudio, lo que restringe el tamaño de la muestra.

References

Ahmed, J., Shah, M., Awais, M., Jin, S., Ali Zafar, W., Ahmad, N., Amin, A., Ali Shah, M., & Ali, I. (2022). Seismo-ionospheric anomalies before the 2019 Mirpur earthquake from ionosonde measurements. Advances in Space Research, 69(1), 26–34. https://doi.org/10.1016/j.asr.2021.07.030

Bernard, E. N., Mofield, H. O., Titov, V., Synolakis, C. E., & Gonzalez, F. I. (2006). Tsunami: Scientific frontiers, mitigation, forecasting and policy implications. Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences 364(1845), 1989-2007. https://doi.org/10.1098/rsta.2006.1809.

Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202. https://doi.org/10.1029/GL017i003p00199.

Cahyadi, M. N., & Heki, K. (2013). Ionospheric disturbances of the 2007 Bengkulu and the 2005 Nias earthquakes, Sumatra, observed with a regional GPS network. Journal of Geophysical Research: Space Physics, 118(4), 1777-1787. https://doi.org/10.1002/jgra.50208.

Cibeira Urtiaga, A., Berrocoso, M., Rosado, B., & Pazos, A. (2022). Detection and study of a high magnitude seismic event from GPS data: Case study of the 2011 Tohoku-Oki earthquake. Earth Sciences Research Journal, 26(2), 91–106. https://doi.org/10.15446/esrj.v26n2.97735.

DeSanto, J. B., Webb, S. C., Nooner, S. L., Schmidt, D. A., Crowell, B. W., Brooks, B. A., Ericksen, T. L., & Chadwell, C. D. (2023). Limited shallow slip for the 2020 Simeonof earthquake, Alaska, constrained by GNSS-Acoustic. Geophysical Research Letters, 50 (e2023GL105045), 1–7. https://doi.org/10.1029/2023GL105045.

Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044. https://doi.org/10.1007/BF00876083.

Duma, G., & Vilardo, G. (1998). Seismicity cycles in the Mt. Vesuvius area and their relation to solar flux and the variations of the Earth's magnetic field. Physics and Chemistry of the Earth, 23(9-10), 927–931. https://doi.org/10.1016/s0079-1946(98)00121-9

Haider, S. F., Shah, M., Li, B., Jamjareegulgarn, P., de Oliveira-Júnior, J. F., & Zhou, C. (2024). Synchronized and Co-Located Ionospheric and Atmospheric Anomalies Associated with the 2023 Mw 7.8 Turkey Earthquake. Remote Sensing, 16(2), 222. https://doi.org/10.3390/rs16020222

Heki, K. (2011). Ionospheric electron enhancement preceding the 2011 Tohoku Oki earthquake. Geophysical Research Letters, 38(17), 1-5. https://doi.org/10.1029/2011GL047908

Heki, K. (2022). Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan, 15 Hunga Tonga-Hunga Ha’apai eruption detected by QZSS-TEC observations in Japan. Earth, Planets and Space, 74, 1-12. https://doi.org/10.1186/s40623-022-01674-7.

Joshi, S., Kannaujiya, S., & Joshi, U. (2023). Analysis of GNSS data for earthquake precursor studies using IONOLAB-TEC in the Himalayan region. Quaternary, 6(2), 1–13. https://doi.org/10.3390/quat6020027

Kakinami, Y., Saito, H., Yamamoto, T., Chen, C.-H., Yamamoto, M.-Y., Nakajima, K., Liu, J.-Y., & Watanabe, S. (2021). Onset altitudes of co-seismic ionospheric disturbances determined by multiple distributions of GNSS TEC after the foreshock of the 2011 Tohoku earthquake on March 9, 2011. Earth and Space Science, 8, 1–12. https://doi.org/10.1029/2020EA001217

Kenpankho, P., Chaichana, A., Trachu, K., Supnithi, P., & Hozumi, K. (2021). Real-time GPS receiver bias estimation. Advances in Space Research, 68(5), 2152–2159. https://doi.org/10.1016/j.asr.2021.01.032

Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., & Maruyama, T. (2011). Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station Chumphon, Thailand. Earth Planets Space, 63(4), 365–370. https://doi.org/10.5047/eps.2011.01.010

Khoshgoftar, M. M., & Saradjian, M. R. (2024). Estimation of the date and magnitude of impending massive earthquakes using the integration of precursors obtainable from remote sensing data. Earth Sciences Research Journal, 28(4), 447–460. https://doi.org/10.15446/esrj.v28n4.105079

Kiyani, A., Shah, M., Ahmed, A., Shah, H. H., Hameed, S., Adil, M. A., & Naqvi, N. A. (2020). Seismo ionospheric anomalies possibly associated with the 2018 Mw 8.2 Fiji earthquake detected with GNSS TEC. Journal of Geodynamics, 140,1–8. https://doi.org/10.1016/j.jog.2020.101782.

Li, X., Chen, C., Liang, H., Li, Y., & Zhan, W. (2023). Earthquake source parameters estimated from high‑rate multi‑GNSS data: a case study of the 2022 M6.9 Menyuan earthquake. Acta Geophysica, 71, 625–636. https://doi.org/10.1007/s11600-022-01000-5.

Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., & Yu, S. B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22(5), 1585–1593. https://doi.org/10.5194/angeo-22-1585-2004.

Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae, 21(10), 2083–2093. https://doi.org/10.5194/angeo-21-2083-2003.

Mukaka M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71. PMID: 23638278; PMCID: PMC3576830.

Nachtergaele, S., Glorie, S., Morley, C., Charusiri, P., Kanjanapayont, P., Vermeesch, P., Carter, A., Van Ranst, G., & De Grave, J. (2019). Cenozoic tectonic evolution of southeastern Thailand derived from low-temperature thermochronology. Journal of the Geological Society, 177, 395–411. https://doi.org/10.1144/jgs2018-167.

National Oceanic and Atmospheric Administration (NOAA). (2023). NOAA forecasts quicker, stronger peaks of solar activity. https://www.weather.gov/news/102523-solar-cycle-25-update.

Nayak, K., Urias, C. L., Romero Andrade, R., Sharma, G., & Soto, M. E. T. (2023a). Analysis of Seismo-Ionospheric Irregularities Using the Available PRNs vTEC from the Closest Epicentral cGPS Stations for Large Earthquakes. Environmental Sciences Proceedings, 27(1), 24. https://doi.org/10.3390/ecas2023-15144.

Nayak, K., López-Urías, C., Romero-Andrade, R., Sharma, G., Guzmán-Acevedo, G. M., Trejo-Soto, M. E. (2023b). Ionospheric Total Electron Content (TEC) anomalies as earthquake precursors: unveiling the geophysical connection leading to the 2023 Moroccan 6.8 Mw earthquake. Geosciences, 13(319), 1–17. https://doi.org/10.3390/geosciences13110319.

Nayak, K., Romero-Andrade, R., Sharma, G., López-Urías, C., Trejo-Soto, M. E., & Vidal-Vega, A. I. (2024). Evaluating Ionospheric Total Electron Content (TEC) Variations as Precursors to Seismic Activity: Insights from the 2024 Noto Peninsula and Nichinan Earthquakes of Japan. Atmosphere, 15(12), 1492. https://doi.org/10.3390/atmos15121492.

Nishioka, M., Saito, S., Tao, C., Shiota, D., Tsugawa, T., & Ishii, M. (2021). Statistical analysis of ionospheric total electron content (TEC): long-term estimation of extreme TEC in Japan. Earth, Planets and Space, 73(1), 1–12. https://doi.org/10.1186/s40623-021-01374-8.

Ouzounov, D., Pulinets, S., Romanov, A., Tsybulya, K., Davidenko, D., Kafatos, M., & Taylor, P. (2011). Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results. Earthquake Science, 24, 557–564. https://doi:10.1007/s11589-011-0817-z.

Palin, R. M., Searle, M. P., Morley, C. K., Charusiri, P., Horstwood, M. S. A., & Roberts, N.M.W. (2013). Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand. Journal of Asian Earth Sciences, 76, 120–136. https://doi.org/10.1016/j.jseaes.2013.01.021.

Peng, Z., Lei, X., Wang, D., Si, X., Mach, P., Zhong, Q., Ding, C., Deng, Y., Qin, M., & Miao, S. (2025). Mainshock rupture properties, aftershock activities and remotely triggered seismicity associated with the 2025 Mw7.7 Sagaing fault earthquake in Myanmar. Earthquake Research Advances, 00413. https://doi.org/10.1016/j.eqrea.2025.100413.

Pikridas, C., Bitharis, S., Katsougiannopoulos, S., Spanakaki, K., Karolos, I.-A. (2019). Study of TEC variations using permanent stations GNSS data in relation with seismic events. Application on Samothrace earthquake of 24 May 2014. Geodesy and Cartography, 45(3), 137–146. https://doi.org/10.3846/gac.2019.10246

Pornsopin, P., Chaila, S., Promsuk, C., Kamjudpai, C., Pananont, P., Phetkongsakul, K., Rungjaeng, W., & Boonchu, N. (2024). Seismic hazard microzonation map for the Central Plain of Thailand. Progress in Applied Science and Technology, 14(1), 42–53. https://doi.org/10.60101/past.2024.251551

Priyadarshi, S., Kumar, S., & Singh, A. K. (2011). Changes in total electron content associated with earthquakes (M>5) observed from GPS station, Varanasi, India. Geomatics, Natural Hazards and Risk, 2(2), 123–139. https://doi.org/10.1080/19475705.2011.563390

Pulinets, S. (2004). Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terrestrial Atmospheric and Oceanic Sciences, 15(3), 413–436. https://doi.org/10.3319/TAO.2004.15.3.413(EP)

Pulinets, S. A., Contreras, A. L., Bisiacchi-Giraldi, G., & Ciraolo, L. (2005). Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003. Geofísica Internacional, 44(4), 369–377. https://orcid.org/0000-0003-3944-6686

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences (IZMIRAN). (2023). Ionospheric weather, planetary storms of total electron content. https://www.izmiran.ru/ionosphere/weather/storm/

Searle, M.P., & Morley, C. K. (2011). Tectonics and thermal evolution of Thailand in the regional context of Southeast Asia. In: Ridd, M.F., Barber, A.J., Crow, M.J. (Eds.), The Geology of Thailand. The Geological Society, London, pp. 539–572. https://doi.org/10.1144/GOTH.20

Shah, M., & Jin, S. (2015). Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw ≥ 5.0 earthquakes (1998-2014). Journal of Geodynamics, 92, 42–49. https://doi.org/10.1016/j.jog.2015.10.002

Shah, M., Ahmed, A., Ehsan, M., Khan, M., Tariq, M. A., Calabia, A., & Rahman, Z. U. (2020). Total electron content anomalies associated with earthquakes occurred during 1998-2019. Acta Astronautica, 175, 268–276. https://doi.org/10.1016/j.actaastro.2020.06.005

Sharma, G., Champati ray, P. K., Mohanty, S., & Kannaujiya, S. (2017). Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quaternary International, 462, 65–74. https://doi.org/10.1016/j.quaint.2017.05.007

Sharma, G., Soubam, M., Walia, D., Nishant, N., Sarma, K. K., & Raju, P. L. N. (2021a). Development of a monitoring system for ionospheric TEC variability before the earthquakes. Applied Computing and Geosciences, 9, 1–7. https://doi.org/10.1016/j.acags.2020.100052

Sharma, G., Saikia, P., Walia, D., Banerjee, P., & Raju, P.L.N. (2021b). TEC anomalies assessment for earthquakes precursors in North-Eastern India and adjoining region using GPS data acquired during 2012-2018, Quaternary International, 575–576, 120–129. https://doi.org/10.1016/j.quaint.2020.07.009

Sharma, G., Romero-Andrade, R., Taloor, A. K., Ganeshan, G., Sarma, K. K., & Aggarwal, S. P. (2022). 2-D ionosphere TEC anomaly before January 28, 2020, Cuba earthquake observed from a network of GPS observations data. Arabian Journal of Geosciences, 15(1348). https://doi.org/10.1007/s12517-022-10605-5

Sharma, G., Nayak, K., Romero-Andrade, R., Aslam, M. A. M., Sarma, K. K., & Aggarwal, S. P. (2024). Low ionosphere density above the earthquake epicentre region of Mw 7.2, El Mayor–Cucapah earthquake evident from Dense CORS Data. Journal of the Indian Society of Remote Sensing, 52(3), 543–555. https://doi.org/10.1007/s12524-024-01837-x

Space Weather Prediction Center (SWPC), National Oceanic and Atmospheric Administration (NOAA). (2023). Solar cycle progression. https://www.swpc.noaa.gov/products/solar-cycle-progression

Takla, E. M. H. & Samwel, S. W. (2023). Possible connection between solar activity and local seismicity. Terrestrial, Atmospheric and Oceanic Sciences, 34, 1–15. https://doi.org/10.1007/s44195-023-00042-6

Thai Meteorological Department. (2021). Focal mechanism analysis for earthquake and tsunami warnings. https://earthquake.tmd.go.th/km_view.php?id=18

Thai Meteorological Department. (2023). Development of seismic hazard microzonation map for the Central Plain of Thailand. https://earthquake.tmd.go.th/hvsr/central.php

Tiryakioglu, I., Yavasoglu, H., Ugur, M.A., Ozkaymak, C., Yilmaz, M., Kocaoglu, H., & Turgut, B. (2017). Analysis of October 23 (Mw 7.2) and November 9 (Mw 5.6), 2011 Van Earthquakes using long-term GNSS time series. Earth Sciences Research Journal, 21(3), 147–156. https://doi.org/10.15446/esrj.v21n3.62812

Ulukavak, M., & Inyurt, S. (2020). Seismo-ionospheric precursors of strong sequential earthquakes in Nepal region. Acta Astronautica, 166, 123–130. https://doi.org/10.1016/j.actaastro.2019.09.033

Urata, N., Duma, G., & Freund, F. (2018). Geomagnetic Kp index and earthquakes. Open Journal of Earthquake Research, 7, 39–52. https://doi: 10.4236/ojer.2018.71003.

USGS. (2008). Tectonic base map of the Sumatra subduction zone showing major faults. https://www.usgs.gov/media/images/tectonic-base-map-sumatra-subduction-zone-showing-major-faults

Watari, S. (2017). Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 69(70), 1–8. https://doi.org/10.1186/s40623-017-0653-z

Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017GL072770

Xu, X., Chen, S., Zhang, S., & Dai, R. (2022). Analysis of potential precursory pattern at Earth surface and the above atmosphere and ionosphere preceding two Mw ≥ 7 earthquakes in Mexico in 2020-2021. Earth and Space Science, 9(e2022EA002267), 1–24. https://doi.org/10.1029/2022EA002267

How to Cite

APA

Pansong, C. & Kenpankho, P. (2025). Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24. Earth Sciences Research Journal, 29(3), 297–312. https://doi.org/10.15446/esrj.v29n3.117195

ACM

[1]
Pansong, C. and Kenpankho, P. 2025. Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24. Earth Sciences Research Journal. 29, 3 (Oct. 2025), 297–312. DOI:https://doi.org/10.15446/esrj.v29n3.117195.

ACS

(1)
Pansong, C.; Kenpankho, P. Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24. Earth sci. res. j. 2025, 29, 297-312.

ABNT

PANSONG, C.; KENPANKHO, P. Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24. Earth Sciences Research Journal, [S. l.], v. 29, n. 3, p. 297–312, 2025. DOI: 10.15446/esrj.v29n3.117195. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/117195. Acesso em: 27 dec. 2025.

Chicago

Pansong, Chollada, and Prasert Kenpankho. 2025. “Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24”. Earth Sciences Research Journal 29 (3):297-312. https://doi.org/10.15446/esrj.v29n3.117195.

Harvard

Pansong, C. and Kenpankho, P. (2025) “Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24”, Earth Sciences Research Journal, 29(3), pp. 297–312. doi: 10.15446/esrj.v29n3.117195.

IEEE

[1]
C. Pansong and P. Kenpankho, “Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24”, Earth sci. res. j., vol. 29, no. 3, pp. 297–312, Oct. 2025.

MLA

Pansong, C., and P. Kenpankho. “Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24”. Earth Sciences Research Journal, vol. 29, no. 3, Oct. 2025, pp. 297-12, doi:10.15446/esrj.v29n3.117195.

Turabian

Pansong, Chollada, and Prasert Kenpankho. “Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24”. Earth Sciences Research Journal 29, no. 3 (October 29, 2025): 297–312. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/117195.

Vancouver

1.
Pansong C, Kenpankho P. Study on the relationship between Global Positioning System Total Electron Content Anomalies and Earthquake Events in Thailand during Solar Cycle 24. Earth sci. res. j. [Internet]. 2025 Oct. 29 [cited 2025 Dec. 27];29(3):297-312. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/117195

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

157

Downloads

Download data is not yet available.