Published
Introducing Quaternary magmatism of Gohar Kouh area with a focus on the lithological, geochemical and petrogenetic characteristics of the rocks (southeast of Iran)
Presentación del magmatismo cuaternario del área de Gohar Kouh con un enfoque en las características litológicas, geoquímicas y petrogenéticas de las rocas (sudeste de Irán)
DOI:
https://doi.org/10.15446/esrj.v29n2.117229Keywords:
Quaternary magmatism, Basalt, Continental arc, Back arc, Subduction, Oman oceanic crust (en)magmatismo cuaternario, basalto, arco continental, arco de respaldo, subducción, corteza oceánica de Omán (es)
Downloads
The Gohar Kouh area, as a suspected tectonic region, consists of a collection of large folded structures, and is the core of a large arc called the Baloch arc, which is located in the southwest of the Sistan Suture Zone in the southeast of Iran. Young magmatism with olivine-basalt and basalt compositionally attributed to the Quaternary age has affected these units in the northern part. These lavas are composed of olivine, pyroxene, and plagioclase phenocrysts with low to moderate alteration, which are situated in a groundmass of plagioclase microlites and fine-grained pyroxenes and opaque minerals. Porphyry texture is the main texture of these rocks. Geochemical studies indicate that these rocks belong to the range of calc-alkaline basalts with moderate potassium and were formed as a result of the subduction of the oceanic crust of Oman under the Eurasian continental crust in the range of arc-related basalts in an active continental margin and a back-arc extensional environment. Investigation of trace element variations in these basalts proves the existence of lithospheric mantle origin. The presence of fluids resulting from subduction, involvement of sediments on the subducted crust, and crustal pollution are some of the reasons that have led to the enrichment of LILE elements compared to HFSE in the magma that created these rocks.
El área de Gohar Kouh, considerada una posible región tectónica, consiste de una colección de grandes estructuras sobrepuestas y es el centro de un arco grande llamado el arco de Baloch, el cual se localiza en el suroeste de la zona de sutura de Sistan, en el sureste de Irán. Magmatismo reciente compuesto de basaltos olivínicos y basaltos que se atribuyen a la edad cuaternaria han afectado estas unidades en la parte norte. Estas lavas están compuestas de olivino, piroxeno y fenocristales de plagiocasa con alteración entre baja y moderada, las cuales están situadas en una masa de tierra con microlitos de plagiocasa, piroxenos de grano fino y minerales opacos. La textura porfirítica es la principal de estas rocas. Estudios geoquímicos indican que estas rocas pertenecen al rango de basaltos calcoalcalinos con potasio moderado que se habrían formado como resultado de la subducción de la capa oceánica de Omán, bajo la capa terrestre continental Eurasiática y están en el rango de basaltos relacionados a un arco en un margen continental activo y en un ambiente extensional de arco de respaldo. La investigación de las variaciones de elementos traza en estos basaltos prueban la existencia del origen de un manto litosférico. La presencia de fluidos resultantes de la subducción, la presencia de sedimentos en la corteza subducida y la contaminación de la corteza son algunas de las razones determinantes para el enriquecimiento de elementos LILE en comparación con los elementos de alta intensidad de campo en el magma que creó estas rocas.
References
Aldanmaz, E., Pearce, J., Thirlwall, M. & Mitchell, J. (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7. DOI: https://doi.org/10.1016/S0377-0273(00)00182-7
Ashrafpour, E., Ansdell, K.M. & Alirezaei, S. (2012). Hydrothermal fluid evolution and ore genesis in the Arghash epithermal gold prospect, northeastern Iran. Journal of Asian Earth Sciences, 51, 30-44. https://doi.org/10.1016/j.jseaes.2012.01.020. DOI: https://doi.org/10.1016/j.jseaes.2012.01.020
Aydin, F., Karsli, O. & Chen, B. (2008). Petrogenesis of the Neogene alkaline volcanics with implications for post -collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos, 104, 249-266. https://doi.org/10.1016/j.lithos.2007.12.010. DOI: https://doi.org/10.1016/j.lithos.2007.12.010
Biabangard, H. & Moradian, A. (2008). Geology and geochemical evaluation of Taftan Volcano, Sistan and Baluchestan Province, southeast of Iran. Chinese Journal of Geochemistry 27, 356-369. https://doi.org/10.1007/s11631-008-0356-z. DOI: https://doi.org/10.1007/s11631-008-0356-z
Boomeri, M., Lashkaripour, G. & Gargich, M. (2005). F and Cl in biotites from Zahedan granitic rocks. Iranian Journal of Crystallography and Mineralogy, 13, 79-94. https://sid.ir/paper/3786/en.
Boomeri, M., Moradi, R. & Bagheri, S. (2020). Petrology and origin of the Lar igneous complex of the Sistan suture zone, Iran. Geologos, 26(1), 51-64. https://doi.org/10.2478/logos-2020-0004. DOI: https://doi.org/10.2478/logos-2020-0004
Boomeri, M., Naruyi, S. & Ghodsi, M.R. (2020). Petrography and geochemistry of igneous rocks and Pb mineralization in Chasorbi area, south of Zahedan, southeastern Iran. Scientific Quarterly Journal of Geosciences, 29 (116), 3-14. https://sid.ir/paper/402528/en.
Camp, V. & Griffis, R. (1982). Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15(3), 221-239. https://doi.org/10.1016/0024-4937(82)90014-7. DOI: https://doi.org/10.1016/0024-4937(82)90014-7
Christoph, B., Karsten, M.H., Philipp, A.B. & Stefan, H.K. (2017). Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contributions to Mineralogy and Petrology,172 (5), 33-47. https://ui.adsabs.harvard.edu/link_gateway/2017CoMP..172...33B/doi:10.1007/s00410-017-1354-0. DOI: https://doi.org/10.1007/s00410-017-1354-0
Condie, K.C. (1999). Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 46(1), 95-101. https://doi.org/10.1016/S0024-4937(98)00056-5. DOI: https://doi.org/10.1016/S0024-4937(98)00056-5
Eftekharnezhad, J. (1992). Geological map of Dorjine, 1:100000, Geological Survey of Iran, Tehran.
Faisala, M., Yanga, X., Khalifa, I.H., Amudaa, A.K. & Sun, Ch. (2020). Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: Implications for petrogenesis and tectonic evolution. Precambrian Research, 344, 105751. https://doi.org/10.1016/j.precamres.2020.105751. DOI: https://doi.org/10.1016/j.precamres.2020.105751
Farhoudi, G. & Karig, D.E. (1977). Makran of Iran and Pakistan as an active arc system. Geology, 5(11), 664-668. https://ui.adsabs.harvard.edu/link_gateway/1977Geo.....5..664F/doi:10.1130/0091-7613(1977)5%3C664:MOIAPA%3E2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(1977)5<664:MOIAPA>2.0.CO;2
Floyd, P., Kelling, G., Gökçen, S. & Gökçen, N. (1991). Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology, 89, 263-280. https://doi.org/10.1016/0009-2541(91)90020-R. DOI: https://doi.org/10.1016/0009-2541(91)90020-R
Ghasemi, H., Sadeghian, M., Kord, M. & Khanalizadeh, A. (2010). The evolution mechanisms of Zahedan granitoidic batholith, southeast Iran. Iranian Society of Crystallography and Mineralogy, 17(4), 551-578. https://www.academia.edu/108254355.
Gunnlaugsson, H.P., Helgason, O., Kristj´ansson, L., Nørnberg, P., Rasmussen, H., Steinþ´orsson, S. & Weyer, G. (2006). Magnetic properties of olivine basalt: Application to Mars. Physics of The Earth and Planetary Interiors, 154(3-4), 276-289. http://dx.doi.org/10.1016/j.pepi.2005.09.012. DOI: https://doi.org/10.1016/j.pepi.2005.09.012
Gust, D.A. & Perfit, M.R. (1987). Phase relations of a High-Mg basalt from the Aleutian island arc: implications for primary island arc basalts and High-Al basalts. Contributions to Mineralogy and Petrology, 97, 7-18. https://doi.org/10.1007/BF00375210. DOI: https://doi.org/10.1007/BF00375210
Hall, A. (1996). Igneous petrology. Longman, New York, 551pp.
Harangi, S., Downes, H., Thirlwall, M. & Gmeling, K. (2007). Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkalineVolcanic Rocks in the Western Carpathian arc, Eastern Central Europe. Journal of petrology, 48(12), 2261-2287. https://doi.org/10.1093/petrology/egm059. DOI: https://doi.org/10.1093/petrology/egm059
Haschke, M., Siebel, W., Günther, A. & Scheuber, E. (2002). Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21–26 S). Journal of Geophysical Research: Solid Earth, 107(B1), ECV 6-1-ECV 6-18. https://doi.org/10.1029/2001JB000328. DOI: https://doi.org/10.1029/2001JB000328
Hastie, A.R., Keer, A.C., Pearce, J.A. & Mitchell, S.F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination. Journal of Petrology, 48(12), 2341-2357. https://doi.org/10.1093/petrology/egm062. DOI: https://doi.org/10.1093/petrology/egm062
Hoang, N., Itoh, J. & Miyagi, I. (2011). Subduction components in Pleistocene to recent Kurile arc magmas in NE Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 200(3-4), 255-266. https://doi.org/10.1016/j.jvolgeores.2011.01.002. DOI: https://doi.org/10.1016/j.jvolgeores.2011.01.002
Hollister, L.S. & Gancarz, A.J. (1971). Compositional sector-zoning in clinopyroxene from the Narce area, Italy. American Mineralogist: Journal of Earth and Planetary Materials, 56, 959-979.
Keshtgar, S., Boomeri, M., Kananian, A. & Nazari, M. (2017). Geochemistry and tectonic setting of Zargoli granodiorite in Sistan suture zone (South East Iran). Iranian Journal of Geology, 11(42), 97-109. https://rimag.ir/en/Article/9488.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986). A Chemical classification of volcanic rocks Based on the Total- Alkali- Silica. Diagram. Journal of Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745. DOI: https://doi.org/10.1093/petrology/27.3.745
Le Maitre, R.W. (1989). A Classification of Igneous Rocks and Glossary of Terms. Blackwell. Oxford, 193 pp.
Li, P., Yu, X., Li, H., Qiu, J. & Zhou, X. (2013). Jurassic-Cretaceous tectonic evolution of Southeast China: geochronological and geochemical constraints of Yanshanian granitoids. International Geology Review, 55(10), 1202-1219. https://doi.org/10.1080/00206814.2013.771952. DOI: https://doi.org/10.1080/00206814.2013.771952
Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0. DOI: https://doi.org/10.1016/S0024-4937(98)00076-0
Middlemost, E.A.K. (1975). The basalt clan. Earth Science Reviews, 11(4), 337-364. https://doi.org/10.1016/0012-8252(75)90039-2. DOI: https://doi.org/10.1016/0012-8252(75)90039-2
Mohammadi, A., Burg, J.-P. & Winkler, W. (2016). Detrital zircon and provenance analysis of Eocene-Oligocene strata in the South Sistan suture zone, southeast Iran: Implications for the tectonic setting. The Geological Society of America Bulletin, 8(6), 615-632. https://doi.org/10.1130/L538.1. DOI: https://doi.org/10.1130/L538.1
Mohammadi, A., Burg, J.-P., Winkler, W., Ruh, J. & Von Quadt, A. (2016b). Detrital zircon and provenance analysis of Late Cretaceous-Miocene on shore Iranian Makran strata: Implications for the tectonic setting. Geological Society of America Bulletin, 128 (9-10), 1481-1499. https://doi.org/10.1130/B31361.1. DOI: https://doi.org/10.1130/B31361.1
Moinevaziri, H. (1985). Volcanism tertiar et quaternair en Iran. PhD Thesis, Faculty of Siences, Orsay University, France.
Niu, Y. (2021). Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth- A review and new perspectives. Earth-Science Reviews, 217, 103614. https://doi.org/10.1016/j.earscirev.2021.103614. DOI: https://doi.org/10.1016/j.earscirev.2021.103614
Omidianfar, S., Monsef, I, Rahgoshay, M., Shafaii Moghadam, H., Cousens, B., Chen, M., Rajabpour, Sh. & Zheng, J. (2023). Neo-Tethyan subduction triggered Eocene–Oligocene magmatism in eastern Iran. Geological Magazine, 160(3), 490-510. https://doi.org/10.1017/S0016756822001066. DOI: https://doi.org/10.1017/S0016756822001066
Özdemir, Y. (2011). Volcanostratigraphy and petrogenesis of Süphan stratovolcano. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 279 pp. https://hdl.handle.net/11511/21137.
Pan, F.-B., Jin, C., He, X., Tao, L., & Jia, B.-J. (2021). A plate-mantle convection system in the West Pacific revealed by tertiary ultramafic-mafic volcanic rocks in Southeast China. Earth and Space Science, 8(11), e2020EA001324. https://doi.org/10.1029/2020EA001324. DOI: https://doi.org/10.1029/2020EA001324
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Chiu, H.Y. & Hua, X. (2014). On the magmatic record of the Makran arc, southeastern Iran: Insights from zircon U-Pb geochronology and bulk-rock geochemistry. Geochemistry, Geophysics, Geosystems, 15, 2151-2169. https://ui.adsabs.harvard.edu/link_gateway/2014GGG....15.2151P/doi:10.1002/2014GC005262. DOI: https://doi.org/10.1002/2014GC005262
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. & Lo, C.H. (2013). Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180-181, 234-251. https://ui.adsabs.harvard.edu/link_gateway/2013Litho.180..234P/doi:10.1016/j.lithos.2013.05.009. DOI: https://doi.org/10.1016/j.lithos.2013.05.009
Pearce, J.A. & Gale, G.H. (1977). Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications, 7, 14-24. https://doi.org/10.1144/GSL.SP.1977.007.01.03. DOI: https://doi.org/10.1144/GSL.SP.1977.007.01.03
Pearce, J.A. & Norry, M.J. (1979). Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1), 33-47. https://doi.org/10.1007/BF00375192. DOI: https://doi.org/10.1007/BF00375192
Pearce, J.A. & Peate, D.W. (1995). Tectonic implications of the composition of volcanic arc magmas. Earth and Planetary Science Letters, 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343. DOI: https://doi.org/10.1146/annurev.ea.23.050195.001343
Pearce, J.A. & Peate, D.W. (1995). Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review Of Earth And Planetary Sciences, 23, 251-286. https://ui.adsabs.harvard.edu/link_gateway/1995AREPS..23..251P/doi:10.1146/annurev.ea.23.050195.001343. DOI: https://doi.org/10.1146/annurev.earth.23.1.251
Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries. Orogenic andesites and related rocks, 8, 525-548. http://refhub.elsevier.com/S0301-9268(19)30564-9/h0500.
Pearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C.J., Norry M.J., (eds.) Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, 230-249. https://orca.cardiff.ac.uk/id/eprint/8626.
Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016. DOI: https://doi.org/10.1016/j.lithos.2007.06.016
Pearce, J.A. (2014). Immobile element fingerprinting of ophiolites. Elements, 10(2), 101-108. https://doi.org/10.2113/gselements.10.2.101. DOI: https://doi.org/10.2113/gselements.10.2.101
Plank, T. & Langmuir, C.H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2. DOI: https://doi.org/10.1016/S0009-2541(97)00150-2
Prelevic, D., Wehrheim, S., Reutter, M., Romer, R.L., Boev, B., Bozovic, M., van den Bogaard, P., Cvetkovic, V. & Schmid, S.M. (2017). The late cretaceous Klepa basalts in Macedonia (FYROM) constraints on the final stage of Tethys closure in the Balkans. Terra Nova., 29(3), 145-153. https://doi.org/10.1111/ter.12264. DOI: https://doi.org/10.1111/ter.12264
Qian, X., Feng, Q., Wang, Y., Chonglakmani, C. & Monjai, D. (2016). Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in northwest Laos. Lithos, 245, 60-75. https://doi.org/10.1016/j.lithos.2015.07.019. DOI: https://doi.org/10.1016/j.lithos.2015.07.019
Rahnama-Rad, J., Sahebzadeh, B. & Mirhajizadeh, A.A. (2008). Weathering and weakness of Zahedan granitoids: A 609 rock engineering point of view. Applied Geology, 4, 247-257. https://sanad.iau.ir/en/Article/1038194.
Rudnick, R.L. & Gao, S. (2014). Composition of the continental crust, Treatise on geochemistry4. In: Reference Module in Earth Systems and Environmental Sciences (Ed. Elias, S.A.) 2nd edition, 1 -51. Elsevier, Amsterdam. DOI: https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Sadeghian, M. & Valizadeh, M. (2007). Mechanism of replacement Northern part of Zahedan Granitoid. Earth Sciences Quarterly, 66, 134-159.
Sadeghian, M., Bouchez, J.L., Nedelec, A., Siqueira, R. & Valizadeh, M.V. (2005). The granite pluton of Zahedan (SE Iran): a petrological and magnetic fabric study of a syntectonic sill emplaced in a transtension Setting. Journal of Asian Earth Sciences, 25, 301- 327. https://doi.org/10.1016/j.jseaes.2004.03.001. DOI: https://doi.org/10.1016/S1367-9120(04)00071-9
Safonova, I.Yu., Buslov, M.M., Simonov, V.A., Izokh, A.E., Komiya, T., Kurganskaya, E.V. & Ohno, T. (2011). Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun’ accretionary complex of Gorny Altai (southwestern Siberia). Russian Geology and Geophysics, 52(4), 421-442. https://doi.org/10.1016/j.rgg.2011.03.005. DOI: https://doi.org/10.1016/j.rgg.2011.03.005
Salas, P., Ruprecht, P., Hernández, L. & Rabbia, O. (2021). Out-of-sequence skeletal growth causing oscillatory zoning in arc olivines. Nature Communications, 12(1), 4069. https://doi.org/10.1038/s41467-021-24275-6. DOI: https://doi.org/10.1038/s41467-021-24275-6
Schoneveld, L., Barnes, S.J., Makkonen, H.V., Vaillant, M.L., Paterson, D.J., Taranovic, V., Wang, K.Y. & Mao, Y.J. (2020). Zoned pyroxenes as prospectivity indicators for magmatic Ni-Cu sulfide mineralization. Frontiers in Earth Science, 8:256. https://doi.org/10.3389/feart.2020.00256. DOI: https://doi.org/10.3389/feart.2020.00256
Sengor, A.M.C. (1990). A New Model for the Late Palaeozoic-Mesozoic Tectonic Evolution of Iran and Implications for Oman, In: Robertson, A.H.F., Searle, M.P. and Ries, A.C., Eds., The Geology and Tectonics of the Oman Region, Geological Society Special Publications, 49, 797-831. http://dx.doi.org/10.1144/gsl.sp.1992.049.01.49. DOI: https://doi.org/10.1144/GSL.SP.1992.049.01.49
Sepidbar, F. (2018). Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources. Gondwana Research, 57, 141-156. https://profdoc.um.ac.ir/paper-abstract-1099044.html DOI: https://doi.org/10.1016/j.gr.2018.01.008
Shervais, J.W. (1982). Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1), 101-118. https://doi.org/10.1016/0012-821X(82)90120-0. DOI: https://doi.org/10.1016/0012-821X(82)90120-0
Smith, E.I., Sánchez, A., Walker, J.D. & Wang, K. (1999). Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small - and large -scale chemical variability of the lithospheric mantle. Journal of Geology, 107, 433-448. https://doi.org/10.1086/314355. DOI: https://doi.org/10.1086/314355
Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345. http://refhub.elsevier.com/S0301-9268(19)30564-9/h0680. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tirrul, R., Bell, I., Griffis, R. & Camp, V. (1983). The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1), 134-150. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2
Walker, R. & Jackson, J. (2004). Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23(5), TC5010. http://dx.doi.org/10.1029/2003TC001529. DOI: https://doi.org/10.1029/2003TC001529
Wood, D.A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1), 11-30. https://doi.org/10.1016/0012-821X(80)90116-8. DOI: https://doi.org/10.1016/0012-821X(80)90116-8
Woodhead, J., Eggins, S. & Gamble, J. (1993). High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4), 491–504. https://doi.org/10.1016/0012-821X(93)90078-N. DOI: https://doi.org/10.1016/0012-821X(93)90078-N
Yoder, H.S. & Tilley, C.E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology, 3(3), 342-532. https://doi.org/10.1093/petrology/3.3.342. DOI: https://doi.org/10.1093/petrology/3.3.342
Zeng, G., Chen, L-H., Xu, X-Sh., Jiang, Sh-Y. & Hofmann, A.W. (2010). Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1-2), 35-45. http://dx.doi.org/10.1016/j.chemgeo.2010.02.009. DOI: https://doi.org/10.1016/j.chemgeo.2010.02.009
Zhang, T.Y., Deng, J., Wang, M., Li, C., Zhang, L. & Sun, W. (2022). Geochemistry and genesis of the Nadun Nb-enriched arc basalt in the Duolong mineral district, western Tibet: Indication of ridge subduction. Geoscience Frontier, 13, 101283. https://doi.org/10.1016/j.gsf.2021.101283. DOI: https://doi.org/10.1016/j.gsf.2021.101283
Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S. & Niu, Y.L. (2006). Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29(1), 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004. DOI: https://doi.org/10.18814/epiiugs/2006/v29i1/004
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











