Published
Three-Dimensional Gravity Interface Inversion Based on Artificial Neural Network and Discrete Cosine Transform Algorithm
Inversión de la interfaz gravitacional tridimensional con base en los algoritmos de transformación de redes neuronales artificiales y coseno discreto
DOI:
https://doi.org/10.15446/esrj.v28n4.117639Keywords:
Discrete Cosine Transform, Neural Network, Application, 3D Gravity (en)Red neuronal, transformada discreta de coseno, aplicación, modelo de gravedad 3D (es)
Downloads
This study applies artificial neural networks to three-dimensional gravity density interface inversion. Parker’s formula based on fast Fourier transform method plays an important role in gravity interface inversion. In the training process of the artificial neural network, random generated underground interface geometries are used as inputs, while the output is the gravity anomaly data calculated by Parker’s formula. A large-scale input-output training set is formed for the training process of the artificial neural network. In addition, discrete cosine transform (DFT) is introduced to compress and store matrices, which reduces computational memory, decreases computation time, and improves computational efficiency in the training and testing processes of the artificial neural network. A deep learning interface inversion algorithm based on the U-net network model is designed. On the basis of the traditional loss function, a smooth loss term and an overfitting suppression term are added to improve the smoothness and convergence efficiency of the gravity interface inversion results. Finally, the inversion prediction is verified through the test sample set to validate the generalization of the established deep learning network model. This paper analyzes the effectiveness and practicality of this method in density interface inversion through theoretical models and actual data experiments. The deep learning interface inversion method based on the improved loss function constraint effectively improves the convergence efficiency and computational stability of density interface inversion. Applying this method to synthetic data and actual measured data processing has achieved good results.
Este estudio aplica redes neuronales artificiales a la interfaz de densidad de la inversión de gravedad tridimensional. La formula de Parker basada en la transformada rápida de Fourier juega un papel importante en la interfaz de inversión de la gravedad. En el proceso de entrenamiento de las redes neuronales artificiales, las geometrías de interfaz subterráneas generadas aleatoriamente se usaron como registros, mientras que los resultados son la información de anomalías de la gravedad calculadas con la formula de Parker. Un amplio conjunto de datos de registro y resultado se definieron para el proceso de entrenamiento de la red neuronal artificial. Adicionalmente, la transformada de coseno discreta se presenta para comprimir y almacenar matrices, y así se reduce la memoria computacional, se reduce el tiempo de computación y se mejora la eficiencia del equipo en los procesos de entrenamiento y de prueba de la red neuronal artificial. De esta forma se diseñó un algoritmo de aprendizaje profundo para la interfaz de inversión basado en el modelo de red tipo U. Con base en la tradicional función de pérdida se adicionaron un término de pérdida suave y un término de sobreajuste de supresión para mejorar la eficiencia de la uniformidad y de la convergencia de los resultados de la interfaz de inversión de la gravedad. Finalmente la predicción de la inversión se verificó a través del ejemplo de prueba para validar la generalización del modelo de red de aprendizaje profundo que se estableció. Este artículo analiza la efectividad y la practicidad de este método de inversión de la interfaz de densidad a través de modelos teóricos y experimentos con información real. Este método de inversión de interfaz de aprendizaje profundo, basada en la restricción de función de perdida mejorada, efectivamente mejora la convergencia de eficiencia y la estabilidad computacional de la inversión de la interfaz de densidad. La aplicación de este método a procesos de información sintética y de información medida ha alcanzado buenos resultados.
References
Adler, J., & Öktem, O. (2017). Solving ill-posed inverse problems using iterative deep neural networks. Inverse problems. https://doi.org/10.1088/1361-6420/aa9581
Ashida, Y. (1996). Data processing of reflection seismic data by use of neural network. Journal of Applied Geophysics, 35(2-3), 89-98. https://doi.org/10.1016/0926-9851(96)00010-9
Bott, M.H.P. (1960). The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophysical Journal of the Royal Astronomical Society, 3, 63-67. https://doi.org/10.1111/j.1365-246X.1960.tb00065.x
Carpenter, C. (2021). Machine-learning method determines salt structures from gravity data. Journal of Petroleum Technology, 73(02), 70–71. https://doi.org/10.2118/0221-0070-JPT
Cordell, L., & Henderson, R. G. (1968). Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics, 33, 596-601. https://doi.org/10.1190/1.1439955
Dai, H., & MacBeth, C. (1995). Automatic picking of seismic arrivals in local earthquake data using an artificial neural network. Geophysical Journal International, 120(3), 758-774. https://doi.org/10.1111/j.1365-246X.1995.tb01851.x
Gómez-Ortiz, D., & Agarwal, B. N. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers & Geosciences, 31(4), 513-520. https://doi.org/10.1016/j.cageo.2004.11.004
Granser, H. (1987a). Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function. Geophysical Prospecting, 35, 1030-1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x
Granser, H. (1987b). Nonlinear inversion of gravity data using the Schmidt-Lichtenstein approach. Geophysics, 52, 88-93. https://doi.org/10.1190/1.1442243
Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. (2017). Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9), 4509–4522. DOI: 10.1109/TIP.2017.2713099
Lelièvre Peter, G., Farquharson Colin, G., & Hurich Charles, A. (2012). Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1-K15. https://doi.org/10.1190/geo2011-0154.1
Li, Y., Jia, Z., & Lu, W. (2022). Self-supervised deep learning for 3D gravity inversion. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-1. DOI: 10.1109/TGRS.2022.3225449
Ma, G., Niu, R., Gao, T., Li, L., Wang, T., & Meng, Q. (2022). High-efficiency gravity data inversion method based on locally adaptive unstructured meshing. IEEE Transactions on Geoscience and Remote Sensing, 60. DOI: 10.1109/TGRS.2022.3142042
Nagendra, R., Prasad, P., & Bhimasankaram, V. (1996). Forward and inverse computer modeling of a gravity field resulting from a density interface using Parker-Oldenberg method. Computers & Geosciences, 22(3), 227-237. https://doi.org/10.1016/0098-3004(95)00075-5
Oldenburg, D. W. (1974). The inversion and interpretation of gravity anomalies. Geophysics, 39(4), 526-536. https://doi.org/10.1190/1.1440444
Parker, R. L. (1972). The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447-455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x
Poulton, M., & El-Fouly, A. (1991). Preprocessing GPR signatures for cascading neural network classification. 61st SEG meeting, Houston, USA, Expanded Abstracts, 507–509. https://doi.org/10.1190/1.1888789
Poulton, M. M., Sternberg, B. K., & Glass, C. E. (1992). Neural network pattern recognition of subsurface EM images. Journal of Applied Geophysics, 29(1), 21-36. https://doi.org/10.1016/0926-9851(92)90010-I
Raiche, A. (1991). A pattern recognition approach to geophysical inversion using neural networks. Geophysical Journal International, 105, 629–648. https://doi.org/10.1111/j.1365-246X.1991.tb00801.x
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
Silva, J. B. C., Santos, D. F., & Gomes, K. P. (2014). Fast gravity inversion of basement relief. Geophysics, 79(5), 79-91. https://doi.org/10.1190/geo2014-0024.1
Sun S., Yin C., & Gao X. (2021). 3D Gravity inversion on unstructured grids. Applied Sciences, 11(2), 722. https://doi.org/10.3390/app11020722
Van Der Baan, M., & Jutten, C. (2000). Neural networks in geophysical applications. Geophysics, 65(4), 1032-1047. https://doi.org/10.1190/1.1444797
Wang, Y. F., Zhang, Y. J., Fu, L. H., & Li, H. W. (2021). Three-dimensional gravity inversion based on 3D U-Net++. Applied Geophysics, 18(4), 451–460. https://doi.org/10.1007/s11770-021-0909-z
Wiener, J., Rogers, J. A., Rogers, J. R., & Moll, R. (1991). Predicting carbonate permeabilities from wireline logs using a back-propagation neural network. 61st SEG meeting, Houston, USA, Expanded Abstracts, 285-288. https://doi.org/10.1190/1.1888943
Winkler, E. (1994). Inversion of electromagnetic data using neural networks. 56th EAEG meeting, Vienna, Austria, Extended Abstracts, P124.
Zhang, S., Yin, C., Cao, X., Sun, S., Liu, Y., & Ren, X. (2022). DecNet: Decomposition network for 3D gravity inversion. Geophysics, 87(5): 1SO-V558. https://doi.org/10.1190/geo2021-0744.1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.