Published
Landslide Distribution and Susceptibility Assessment in NW Pakistan: Insights from Field Observations and Factor Analysis
Evaluación de la distribución y susceptibilidad de deslizamientos de tierra en el noroeste de Pakistán: perspectivas derivadas de observaciones de campo y análisis factorial
DOI:
https://doi.org/10.15446/esrj.v29n1.117884Keywords:
Hindukush, Chitral, Susceptibility, Landslide, Inventory (en)Hindukush, Chitral, susceptibilidad, deslizamientos de tierra, inventario (es)
Downloads
The Hindukush region in Northwest Pakistan is a mountainous area that often faces natural disasters, such as landslides, flash floods, glacial lake outbursts, and debris flow, that alter the landscape and damage property. This study focused on the Chitral area of the Hindukush region to assess the landslide distribution and susceptibility using field observations and factor analysis. Nine landslide causative factors were selected and weighted using Geographic Information System (GIS)-based Frequency Ratio (FR) and Analytical Hierarchy Process (AHP) techniques. The factors included slope, aspect, rainfall, land cover, lithology, seismicity, distance to faults, streams, and roads. Landslide susceptibility maps were generated and classified into five categories: very high, high, moderate, low, and very low. Various landslides were observed in the field comprising debris flow, debris slide, soil erosion, and rockfall. Rockfall in the study area indicates active seismicity in the Hindukush region. Furthermore, the area under the curve method validated the results, which gave 0.80 for FR and 0.73 for AHP. The results showed that most of the landslides in the study area were caused by steep slopes of mountains, followed by precipitation. The high landslide susceptibility zones in the study area matched well with the field-based landslide collections, which showed the reliability of the mapping methods. These findings can help plan and implement measures in the Hindukush region to reduce the risk and impact of landslides, such as early warning systems, slope stabilization, land use regulation, and evacuation plans.
La región de Hindukush en el noroeste de Pakistán es una área montañosa que eventualmente presenta desastres naturales, como deslizamientos de tierra, riadas, inundación por desborde de lagos glaciares y flujo de detritos, que alteran el paisaje y dañan la propiedad. Este estudio se enfoca en el área de Chitral, de la región Hindukush, con el fin de medir la distribución de los deslizamientos de tierra y la susceptibilidad a estos a través de observaciones de campo y análisis de factores. Para esto se seleccionaron nueve factores determinantes y se ponderaron a través de técnicas de relación de frecuencias y proceso de jerarquía analítica con base en sistemas de información geográfica. Estos factores son: inclinación, aspecto, precipitación de lluvia, cobertura terrestre, litología, sismicidad, distancia a fallas, arroyos y carreteras. Los mapas de susceptibilidad de deslizamientos se generaron y clasificaron en cinco categorías: muy alto, alto, moderado, bajo y muy bajo. Varios deslizamientos se observaron en campo para analizar el flujo de detritos, el deslizamiento de detritos, la erosión del suelo y la caida de rocas. La caida de rocas en el área de estudio indica la seismicidad activa en la región del Hindukush. Además, el área bajo el método de curva validó los resultados, con 0.80 para la relación de frecuencias y 0.73 para el proceso de jerarquía analítica. Los resultados señalan que los factores que han causado la mayoría de los deslizamientos de tierra en el área de estudio son las pendientes pronunciadas de las montañas y la precipitación. Las zonas de alta susceptibilidad a deslizamientos de tierra en el área de estudio coinciden con las colecciones de información de campo sobre deslizamientos, lo que muestra la fiabilidad de los métodos de mapeo. Estos hallazgos pueden ayudar a planear e implementar medidas en la región del Hindukush para reducir el riesgo y el impacto de los deslizamientos, tales como sistemas de alerta temprana, estabilización de taludes, regulación del uso del suelo y planes de evacuación.
References
Acharya, T. D., & Lee, D. H. (2019). Landslide susceptibility mapping using relative frequency and predictor rate along Araniko Highway. KSCE Journal of Civil Engineering, 23, 763-776.
Agrawal, N., & Dixit, J. (2023). GIS-based landslide susceptibility mapping of the Meghalaya-Shillong Plateau region using machine learning algorithms. Bulletin of Engineering Geology and the Environment, 82(5), 170.
Ahmad, M. N., Shao, Z., Aslam, R. W., Ahmad, I., Liao, M., Li, X., & Song, Y. (2022). Landslide hazard, susceptibility and risk assessment (HSRA) based on remote sensing and GIS data models: a case study of Muzaffarabad Pakistan. Stochastic Environmental Research and Risk Assessment, 36(12), 4041-4056.
Ahmad, M. S., Lisa. M., & Khan, S. (2023). Comparative analysis of analytical hierarchy process (AHP) and frequency ratio (FR) models for landslide susceptibility mapping in Reshun, NW Pakistan. Kuwait Journal of Science, 50(3), 387-398.
Ahmad, M. S., Lisa, M., & Khan, S. (2024). Assessment and mapping of landslides in steep mountainous terrain using PS-InSAR: A case study of Karimabad Valley in Chitral. Kuwait Journal of Science, 51(1), 100137.
Ahmad, S. M., Sadhasivam, N., Lisa, M., Lombardo, L., Emil, M. K., Zaki, A., van Westen, C.J., Fadel, I., & Tanyas, H. (2024). Standing on the shoulder of a giant landslide: A six-year long InSAR look at a slow-moving hillslope in the western Karakoram. Geomorphology, 444, 108959.
Ahmed, B. (2015). Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides, 12(6), 1077-1095.
Ali, S., Biermanns, P., Haider, R., & Reicherter, K. (2019). Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Natural Hazards and Earth System Sciences, 19(5), 999-1022.
Aneel, A., Nasrullah, A., Khalid, S., Xuan, X. X., Ahmad, S. M., & Ning, S. (2023). Landslide susceptibility mapping of Chilas area along Karakorum highway, Gilgit Baltistan, Pakistan. Iranian Journal of Geophysics, 16(4), 69-84.
Aslam, B., Zafar, A., & Khalil, U. (2023). Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Natural Hazards, 115(1), 673-707.
Bachri, S., & Shresta, R. P. (2010). Landslide hazard assessment using analytic hierarchy processing (AHP) and geographic information system in Kaligesing mountain area of Central Java Province Indonesia.
Basharat, M., Shah, H. R., & Hameed, N. (2016). Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arabian Journal of Geosciences, 9, 1-19.
Boukhres, N., Mastere, M., Thiery, Y., Maquaire, O., El Fellah, B., & Costa, S. (2023). A comparative modeling of landslides susceptibility at a meso-scale using frequency ratio and analytic hierarchy process models in geographic information system: the case of African Alpine Mountains (Rif, Morocco). Modeling Earth Systems and Environment, 9(2), 1949-1975.
Bourenane, H., Guettouche, M. S., Bouhadad, Y., & Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9, 1-24.
Dai, F. C., Lee, C. F., Li, J. X. Z. W., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental geology, 40, 381-391.
Das, Suvam, Shantanu Sarkar, and Debi Prasanna Kanungo. "GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya." Environmental Monitoring and Assessment 194.4 (2022): 234.
Ding, Q., Chen, W., & Hong, H. (2017). Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto international, 32(6), 619-639.
Du, J., Glade, T., Woldai, T., Chai, B., & Zeng, B. (2020). Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Engineering Geology, 270, 105572.
Fraser, J. E., Searle, M. P., Parrish, R. R., & Noble, S. R. (2001). Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains. Geological Society of America Bulletin, 113(11), 1443-1455.
Ghimire, M. (2011). Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins. Natural hazards, 56(1), 299-320.
Gorsevski, P. V., Gessler, P. E., Foltz, R. B., & Elliot, W. J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395-415.
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66.
Hildebrand, P. R., Noble, S. R., Searle, M. P., Waters, D. J., & Parrish, R. R. (2001). Old origin for an active mountain range: Geology and geochronology of the eastern Hindu Kush, Pakistan. Geological Society of America Bulletin, 113(5), 625-639.
Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
Kaur, H., Gupta, S., Parkash, S., & Thapa, R. (2023). Knowledge-driven method: a tool for landslide susceptibility zonation (LSZ). Geology, Ecology, and Landscapes, 7(1), 1-15.
Khan, A., Gupta, S., & Gupta, S. K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International journal of disaster risk reduction, 47, 101642.
Khan, M. A., Treloar, P. J., Searle, M. P., & Jan, M. Q. (2000). Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geological Society of London.
Khattak, G. A., Owen, L. A., Kamp, U., & Harp, E. L. (2010). Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology, 115(1-2), 102-108.
Kumar, M., Biswas, S., Kar, S., Božanić, D., & Puška, A. (2023). An Interval Type 2 Fuzzy Decision-Making Framework for Exploring Critical Issues for the Sustenance of the Tea Industry. Axioms, 12(10), 986.
Kuradusenge, M., Kumaran, S., & Zennaro, M. (2020). Rainfall-induced landslide prediction using machine learning models: The case of Ngororero District, Rwanda. International journal of environmental research and public health, 17(11), 4147.
Mao, Y., Li, Y., Teng, F., Sabonchi, A. K., Azarafza, M., & Zhang, M. (2024). Utilizing hybrid machine learning and soft computing techniques for landslide susceptibility mapping in a Drainage Basin. Water, 16(3), 380.
Panday, S., & Dong, J. J. (2021). Topographical features of rainfall-triggered landslides in Mon State, Myanmar, August 2019: Spatial distribution heterogeneity and uncommon large relative heights. Landslides, 18(12), 3875-3889.
Park, D. W., Nikhil, N. V., & Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11), 2833-2849.
Pradhan, A. M. S., & Kim, Y. T. (2016). Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. Catena, 140, 125-139.
Ray, R. L., Lazzari, M., & Olutimehin, T. (2020). Remote sensing approaches and related techniques to map and study landslides. Landslides-Investig. Monit, 2, 1-25.
Razavizadeh, S., Solaimani, K., Massironi, M., & Kavian, A. (2017). Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environmental Earth Sciences, 76, 1-16.
Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgün, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7, 725-742.
ReliefWeb. 2024. Floods Rapid Needs Analysis Report 2024 Chitral, Pakistan. Geneva, Switzerland: United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Retrieved February 7, 2025 (https://reliefweb.int/report/pakistan/floods-rapid-needs-analysis-report-2024-chitral-pakistan).
Saha, S., Majumdar, P., & Bera, B. (2023). Deep learning and benchmark machine learning based landslide susceptibility investigation, Garhwal Himalaya (India). Quaternary Science Advances, 10, 100075.
Saleem, M., Naseem, A.A., Rehman, F. et al. Satellite-based lithological characterization of Central Chitral, Karakoram Ranges, Northern Pakistan. Arab J Geosci 14, 1000 (2021). https://doi.org/10.1007/s12517-021-07350-6
Schurr, B., Ratschbacher, L., Sippl, C., Gloaguen, R., Yuan, X., & Mechie, J. (2014). Seismotectonics of the Pamir. Tectonics, 33(8), 1501-1518.
Tang, Y., Feng, F., Guo, Z., Feng, W., Li, Z., Wang, J., Sun, Q., Ma, H., & Li, Y. (2020). Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). Journal of Cleaner Production, 277, 124159.
Thapa, D., & Bhandari, B. P. (2019). GIS-Based frequency ratio method for identification of potential landslide susceptible area in the Siwalik zone of Chatara-Barahakshetra section, Nepal. Open Journal of Geology, 9(12), 873.
Vakhshoori, V., & Zare, M. (2018). Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps?. Geomatics, Natural Hazards and Risk, 9(1), 249-266.
Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult?. Bulletin of Engineering geology and the Environment, 65, 167-184.
Wang, Y., Chai, J., Cao, J., Qin, Y., Xu, Z., & Zhang, X. (2020). Effects of seepage on a three-layered slope and its stability analysis under rainfall conditions. Natural Hazards, 102, 1269-1278.
Wang, G., Chen, X., & Chen, W. (2020). Spatial prediction of landslide susceptibility based on GIS and discriminant functions. ISPRS International Journal of Geo-Information, 9(3), 144.
Wu, Q., Xie, Z., Tian, M., Qiu, Q., Chen, J., Tao, L., & Zhao, Y. (2024). Integrating Knowledge Graph and Machine Learning Methods for Landslide Susceptibility Assessment. Remote Sensing, 16(13), 2399.
Xu, Q., Zhao, B., Dai, K., Dong, X., Li, W., Zhu, X., Yang. Y., Xiao, X., Wang, X, Huang, J., Lu, H., Deng, B., & Ge, D. (2023). Remote sensing for landslide investigations: A progress report from China. Engineering Geology, 321, 107156.
Yalçın, A., Reis, S., Aydınoğlu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287.
Yeşilnacar, E., & Hunter, G. J. (2005). Application of neural networks for landslide susceptibility mapping in Turkey. In Recent advances in design and decision support systems in architecture and urban planning (pp. 3-18). Springer Netherlands.
Yılmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35(6), 1125-1138.
Youssef, B., Bouskri, I., Brahim, B., Kader, S., Brahim, I., Abdelkrim, B., & Spalević, V. (2023). The contribution of the frequency ratio model and the prediction rate for the analysis of landslide risk in the Tizi N'tichka area on the national road (RN9) linking Marrakech and Ouarzazate. Catena, 232, 107464.
Zanchi, A., Poli, S., Fumagalli, P., & Gaetani, M. (2000). Mantle exhumation along the Tirich Mir Fault Zone, NW Pakistan: pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin. Geological Society, London, Special Publications, 170(1), 237-252.
Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., & Garcia, R. A. (2017). Mapping landslide susceptibility using data-driven methods. Science of the total environment, 589, 250-267.
Zhang, W., Liu, S., Wang, L., Samui, P., Chwała, M., & He, Y. (2022). Landslide susceptibility research combining qualitative analysis and quantitative evaluation: A case study of Yunyang County in Chongqing, China. Forests, 13(7), 1055.
Zhang, Y. X., Lan, H. X., Li, L. P., Wu, Y. M., Chen, J. H., & Tian, N. M. (2020). Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China. Journal of Mountain Science, 17(2), 340-357.
Zou, Q., Jiang, H., Cui, P., Zhou, B., Jiang, Y., Qin, M., ... & Li, C. (2021). A new approach to assess landslide susceptibility based on slope failure mechanisms. Catena, 204, 105388.
Zulhaidi Mohd Shafri, H., Mohd Zahidi, I., & Abu Bakar, S. (2010). Development of landslide susceptibility map utilizing remote sensing and Geographic Information Systems (GIS). Disaster Prevention and Management: An International Journal, 19(1), 59-69.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.