Published
Geomorphology and Landforms Evolution of Roste Valley, Western Zagros Fold-Thrust Belt, Iraqi Kurdistan Region
Geomorfología y evolución de accidentes geográficos de Roste Valley, cinturón plegado del Zagros occidental, región del kurdistán iraquí
DOI:
https://doi.org/10.15446/esrj.v29n1.117910Keywords:
Roste Valley, Landforms, Tectonics, Drainage deflection, Pressure ridge, Klippe and Window thrusting, perched syncline (en)Roste Valley, accidentes geográficos, tectónica, deflexión del drenaje, cresta de presión, cabalgamiento de Klippe y de ventanas, sinclinal encaramado (es)
Downloads
This study presents a detailed geomorphological survey and mapping of the main landforms in the Roste Valley, which have resulted from a combination of surficial and tectonic processes. The landforms are classified using the ITC system, which is based on the origin of the landforms and the forces that shape the Earth’s surface and is supported by extensive fieldwork. The Roste Valley is located within the Zagros Imbricated and Zagros Suture zones on the unstable shelf of the Arabian Plate, contributing to the formation of a variety of geomorphic features with different genetic origins. Local climatic conditions significantly enhance the rate of surficial processes, while the tectonic setting near the subduction zone adds further complexity to the landscape. The geomorphological survey and mapping reveal that the area is polygenetic in origin, with landforms shaped by both tectonic and surficial forces. These landforms are categorized as tectonic, structural, denudation, mass-wasting, fluvial, and karst in origin.
Este estudio presenta una investigación geomorfológica y un mapeo de las principales características naturales de la superficie terrestre en el Roste Valley, el cual ha sido el resultado de una combinación de procesos tectónicos con procesos superficiales. Las características de la superficie en la zona de estudio se clasificaron de acuerdo con el sistema ITC, el cual se basa en el origen de los accidentes geográficos y las fuerzas que modelan la superficie terrestre, y se sustentaron en un amplio trabajo de campo. El Roste Valley se ubica en las zonas traslapado y sutura del Zagros, en la inestable placa tectónica árabiga, lo que contribuyó a la formación de una amplia variedad de características geomorfológicas con diferentes orígenes genéticos. Las condiciones climáticas locales acentúan el peso de los procesos superficiales, mientras que la estructura tectónica cerca de la zona de subducción añade complejidad al paisaje geológico. La investigación geomorfológica y el mapeo revelan los orígenes poligenéticos del área, con accidentes geográficos moldeados por fuerzas tectónicas y superficiales. Los orígenes de estas características naturales de la superficie se categorizan como tectónicos, estructurales, de denudación, de remoción de masa, fluviales y kársticos.
References
Bahrami, S. (2012). Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics, Geomorphology, 159 pp. 37-49. http://dx.doi.org/10.1016/j.geomorph.2012.03.003.
Balogun, A., Dawers, N., Gasparini, N. & Giachetta, E. (2011). Evolution of triangular topographic facets along active normal fault, In AGU Fall Meeting Abstracts (Vol. 2011), pp. EP43C-0709.
Berger, C., Schulze, M., Rieke‐Zapp, D. & Schlunegger, F. (2010). Rill development and soil erosion: a laboratory study of slope and rainfall intensity, Earth Surface Processes and Landforms, 35 (12), pp. 1456-1467. http://dx.doi.org/10.1002/esp.1989.
Bety, A. (2013). Urban Geomorphology of Sulaimani City, Using Remote Sensing and GIS Techniques, Kurdistan Region, Iraq. . Ph.D. Thesis. Department of Geology, University of Sulaimani, Iraq.
Bety, A. (2022). Discrimination different lithological units using a remote sensing application: A case study in the Dokan Area, Kurdistan Region -Iraq, Journal of Water and Land Development, 2022, No. 55 pp. 109–114. http://dx.doi.org/10.24425/jwld.2022.142312.
Bucci, F., Cardinali, M. & Guzzetti, F. (2013). Structural geomorphology, active faulting and slope deformations in the epicentre area of the MW 7.0, 1857, Southern Italy earthquake, Physics and Chemistry of the Earth, Parts a/b/c, 63 pp. 12-24. http://dx.doi.org/10.1016/j.pce.2013.04.005.
Conforti, M., Mercuri, M. & Borrelli, L. (2020). Morphological changes detection of a large earthflow using archived images, lidar-derived dtm, and uav-based remote sensing, Remote Sensing, 13 (1), pp. 1-25. http://dx.doi.org/10.3390/rs13010120.
Daley, J.S. & Cohen, T.J. (2018). Climatically-controlled river terraces in eastern Australia, Quaternary, 1 (3), pp. 1-20. http://dx.doi.org/10.3390/quat1030023.
Dunnington, H.V. (1958). Generation, migration, accumulation, and dissipation of oil in northern Iraq, Symposium, American Association of Petroleum Geologists, pp. 1194-1251.
Gao, P. (2013). Rill and gully development processes, Mountain and Hillslope Geomorphology, Elsevier, pp. 122-131. http://dx.doi.org/10.1016/B978-0-12-374739-6.00156-1.
Gomberg, J., Bodin, P., Savage, W. & Jackson, M.E. (1995). Landslide faults and tectonic faults, analogs?: The Slumgullion earthflow, Colorado, Geology, 23 (1), pp. 41-44. http://dx.doi.org/10.1130/0091-7613(1995)023%3C0041:LFATFA%3E2.3.CO;2.
Gutiérrez, F. & Gutiérrez, M. (2016). Landforms of the earth: an illustrated guide, Springer, pp. 506.
Haldar, S.K. (2020). Introduction to mineralogy and petrology, Elsevier, pp. 419. http://dx.doi.org/10.1016/c2019-0-00625-5.
Howard, A.D. (1994). Badlands, Geomorphology of desert environments, Springer, pp. 213-242.
Jain, S. (2014). Fundamentals of physical geology, Springer, pp. 510. http://dx.doi.org/10.1007/978-81-322-1539-4.
Jassim, S.Z. & Goff, J.C. (2006). Geology of Iraq, DOLIN, sro, distributed by Geological Society of London, pp. 341.
Koshnaw, R.I., Schlunegger, F. & Stockli, D.F. (2021). Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq, Solid Earth, 12 (11), pp. 2479-2501. http://dx.doi.org/10.5194/se-12-2479-2021.
Luckman, B.H. (2013). 7.17 Processes, Transport, Deposition, and Landforms: Rockfall, Treatise on Geomorphology, Academic Press, San Diego, pp. 174-182. http://dx.doi.org/10.1016/B978-0-12-374739-6.00162-7.
Luino, F. & Turconi, L. (2020). Translational Rock-Block Slides in a Tertiary Flyschoid Complexes of Southern Piedmont Region (North-West Italy), Landslides-Investigation and Monitoring, IntechOpen, pp. 222. http://dx.doi.org/10.5772/intechopen.92600.
Lundberg, J. (2019). Karren, surface, Encyclopedia of Caves, Elsevier, Carleton University, Ottawa, ON, Canada, pp. 600-608. http://dx.doi.org/10.1016/B978-0-12-814124-3.00071-6.
Michard, A., Ibouh, H. & Charrière, A. (2011). Syncline‐topped anticlinal ridges from the High Atlas: A Moroccan conundrum, and inspiring structures from the Syrian Arc, Israel, Terra Nova, 23 (5), pp. 314-323. http://dx.doi.org/10.1111/j.1365-3121.2011.01016.x.
Morgan, I.M. (1991). Geology of caves, U.S. Government Printing Office, Washington, D.C., pp. 19. http://dx.doi.org/10.3133/7000072.
Morino, C., Coratza, P. & Soldati, M. (2022). Landslides, a key landform in the global geological heritage, Frontiers in Earth Science, 10 pp. 1-20. http://dx.doi.org/10.3389/feart.2022.864760.
Oard, M.J. (2008). Water Gaps in the Alaska Range, Creation Research Society Quarterly, 44 pp. 180-192.
Panizza, M. & Goudie, A. (2013). Encyclopedia of Geomorphology, Routledge, London, pp. 1200. http://dx.doi.org/10.4324/9780203381137.
Philip, H., Rogozhin, E.A., Cisternas, A.E., Bousquet, J.C., Borisov, B.A. & Karakhanian, A. (1992). The Armenian earthquake of 1988 December 7: faulting and folding, neotectonics and palaeoseismicity, Geophysical Journal International, 110 pp. 141-158. http://dx.doi.org/10.1111/j.1365-246X.1992.tb00718.x.
Pirasteh, S., Tripathi, N., Mansor, S., Pradhan, B. & Ramli, M. (2009). Landscapes rendition in Zagros Mountain, Iran using geoinformation technology, J Geom, 3 pp. 71-76.
Rao, D.P. (1974). Procedure of geomorphological survey: a case study of Calabria, Italy, Journal of the Indian Society of Photo-Interpretation, 2 (2), pp. 53-63. http://dx.doi.org/10.1007/BF02990754.
Sebai, N., Vendeville, B.C., Boukadi, N. & Dhahri, F. (2021). The perched synclines look-alike of central Tunisia: Examples of diapir rise–Fall–Rise illustrated by field, geophysical, and experimental data, Journal of Structural Geology, 147 pp. 1-18. http://dx.doi.org/10.1016/j.jsg.2021.104336.
Smith, M.J., Paron, P. & Griffiths, J.S. (2011). Geomorphological Mapping : Methods and Applications, Elsevier, Amsterdam, 15 pp. 610. http://lib.ugent.be/catalog/ebk01:2550000000060463.
Sponemann, J. (1989). Homoclinal ridges in Lower Saxony, Catena Supplement, 15 pp. 133-149.
Vera, J., Gines, J., Oehlers, M., McClay, K. & Doski, J. (2009). Structure of the Zagros fold and thrust belt in the Kurdistan Region, northern Iraq, Trabajos de Geologia, 29 pp. 213-217.
Verstappen, H.T., Zuidam, R.A.v., International Institute for Aerial, S. & Earth, S. (1975). ITC system of geomorphological survey, International Institute for Aerial Survey and Earth Sciences, pp. 49.
Ward, D.J. (2019). Dip, layer spacing, and incision rate controls on the formation of strike valleys, cuestas, and cliffbands in heterogeneous stratigraphy, Lithosphere, 11 (5), pp. 697-707. http://dx.doi.org/10.1130/L1056.1.
Zhazhlayi, P.K. & Surdashy, A. (2022). Neo-Tectonism and Quantitative Morphotectonic Analysis of Roste Valley at Imbricated-Suture Zones, Kurdistan Region, Iraq, The Iraqi Geological Journal, pp. 35-58. http://dx.doi.org/10.46717/igj.55.2E.3ms-2022-11-17.
Zilberman, E., Greenbaum, N., Nahmias, Y. & Porat, N. (2011). The evolution of the northern shutter ridge, Mt. Carmel, and its implications on the tectonic activity along the Yagur fault, Ministry of National Infrastructures, Geological Survey of Israel, GSI/14/2011 pp. 26.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.