Published
The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China
Influencia del movimiento vertical de la tierra en zonas costeras sobre el aumento relativo del nivel del mar: estudio de caso en Shanghái, China
DOI:
https://doi.org/10.15446/esrj.v29n2.118098Keywords:
Relative sea level rise, Vertical land motion, Shanghai, InSAR (en)Aumento relativo del nivel del mar, movimiento vertical de la tierra, Shanghái, Interferométrico de Apertura Sintética (es)
Downloads
Understanding the current Vertical Land Motion (VLM), including subsidence or uplift, is the basis for projecting Relative Sea Level Rise (RLSR) and estimating related risks. However, in Shanghai, the impacts of the spatiotemporal change of VLM are little known. The purpose of this study was to quantify the impact of VLM on RSLR and investigate the spatiotemporal evolution characteristics of VLM through tide gauge records, satellite altimetry observations, and Interferometric Synthetic Aperture Radar (InSAR) measurements. The calculations indicated that the RSLR (5.67±0.58 mm/year) from 1969 to 2019 was approximately twice the SLR trend (2.44±0.28 mm/year) from 1993 to 2019. The VLM, especially subsidence, is the main driver of RSLR. Moreover, spatial and temporal patterns of VLM are highly uneven and nonlinear. These results reveal that VLM is the main driver of RSLR. Unfortunately, previous studies have mostly underestimated or overlooked the impact of VLM on the risks of RSLR and subsequent coastal flooding. Thus, prevention strategies for controlling VLM are warranted to minimize the negative impact related to the RSLR. Our research provides a theoretical basis for urban disaster prevention in Shanghai and the planning of coastal cities worldwide.
Comprender el movimiento vertical de la tierra (VLM) actual, incluida la subsidencia y la elevación, es la base para proyectar el aumento relativo del nivel del mar (RLSR) y estimar los riesgos relacionados. Sin embargo, en Shanghái, los impactos del cambio espaciotemporal del VLM son poco conocidos. El propósito de este estudio fue cuantificar el impacto del VLM en el RSLR e investigar las características de evolución espaciotemporal del VLM a través de registros de mareógrafos, observaciones de altimetría satelital y mediciones del Radar Interferométrico de Apertura Sintética (InSAR). Los cálculos indicaron que el RSLR (5,67 ± 0,58 mm/año) de 1969 a 2019 fue aproximadamente el doble de la tendencia del SLR (2,44 ± 0,28 mm/año) de 1993 a 2019. El VLM, especialmente la subsidencia, es el principal impulsor del RSLR. Además, los patrones espaciales y temporales del VLM son altamente desiguales y no lineales. Estos resultados revelan que el VLM es el principal impulsor del RSLR. Desafortunadamente, estudios previos han subestimado o pasado por alto, en su mayoría, el impacto de la VLM en los riesgos de RSLR y las subsiguientes inundaciones costeras. Por lo tanto, se justifican estrategias de prevención para controlar la VLM a fin de minimizar el impacto negativo relacionado con la RSLR. Nuestra investigación proporciona una base teórica para la prevención de desastres urbanos en Shanghái y la planificación de ciudades costeras en todo el mundo.
References
Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771. https://doi.org/10.1007/s11069-011-9866-9
Adelekan I O. (2010). Vulnerability of poor urban coastal communities to flooding in Lagos, Nigeria. Environment and Urbanization, 22, 433-450. https://doi.org/10.1177/0956247810380141
Balica S F, Wright N G, Van Der Meulen F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 64: 73-105. https://doi.org/10.1007/s11069-012-0234-1
Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., & Tsuchiya, N. (2021). Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability, 50, 87–97. https://doi.org/10.1016/j.cosust.2021.02.010
Chai, J.-C., Shen, S.-L., Zhu, H.-H., & Zhang, X.-L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Geotechnique, 54(2), 143–147. https://doi.org/10.1680/geot.2004.54.2.143
Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. JOSA A, 18(2), 338–351. https://doi.org/10.1364/JOSAA.18.000338
Chen, C. W., & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. https://doi.org/10.1109/TGRS.2002.802453
Chen Xiqing. (1991). Sea-level changes since the early 1920’s from the long records of two tidal gauges in Shanghai, China. Journal of Coastal Research, 787–799. https://www.jstor.org/stable/4297894
Cheng, H. Q., Chen, J. Y., Chen, Z. J., Ruan, R. L., Xu, G. Q., Zeng, G., Zhu, J. R., Dai, Z. J., Chen, X. Y., Gu, S. H., Zhang, X. L., & Wang, H. M. (2018). Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast. Engineering, 4(1), 156–163. https://doi.org/10.1016/j.eng.2018.02.002
Dokka, R. K. (2006). Modern-day tectonic subsidence in coastal Louisiana. Geology, 34(4), 281–284. https://doi.org/10.1130/G22264.1
Du S, Cheng X, Huang Q, et al. (2019). Brief communication: Rethinking the 1998 China floods to prepare for a nonstationary future. Natural Hazards and Earth System Sciences, 19(3): 715-719. https://doi.org/10.5194/nhess-19-715-2019
Eggleston, J., & Pope, J. (2013). Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. US Geological Survey Circular, 1392, 30. https://dx.doi.org/10.3133/cir1392
Esteban, M., Takagi, H., Nicholls, R. J., Fatma, D., Pratama, M. B., Kurobe, S., Yi, X., Ikeda, I., Mikami, T., Valenzuela, P., & Avelino, E. (2020). Adapting ports to sea-level rise: Empirical lessons based on land subsidence in Indonesia and Japan. Maritime Policy & Management, 47(7), 937–952. https://doi.org/10.1080/03088839.2019.1634845
Fang J, Liu W, Yang S, et al. (2017). Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China. Ocean & Coastal Management, 139: 125-140. https://doi.org/10.1016/j.ocecoaman.2017.02.003
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., & Roth, L. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183
Fuchs, R. J. (2010). Cities at Risk: Asia’s Coastal Cities in an Age of Climate Change. 12.
Gens, R., & VAN GENDEREN, J. L. (1996). Review Article SAR interferometry—Issues, techniques, applications. International Journal of Remote Sensing, 17(10), 1803–1835. https://doi.org/10.1080/01431169608948741
Gómez, J. F., Kwoll, E., Walker, I. J., & Shirzaei, M. (2021). Vertical Land Motion as a Driver of Coastline Changes on a Deltaic System in the Colombian Caribbean. Geosciences, 11(7), 300. https://doi.org/10.3390/geosciences11070300
Higgins, S. A. (2016). Review: Advances in delta-subsidence research using satellite methods. Hydrogeology Journal, 24(3), 587–600. https://doi.org/10.1007/s10040-015-1330-6
Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3(9), 802–806. https://doi.org/10.1038/nclimate1979
Holzer, ThomasL., & Johnson, A. I. (1985). Land subsidence caused by ground water withdrawal in urban areas. GeoJournal, 11(3). https://doi.org/10.1007/BF00186338
Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K., & Shaw, T. A. (2018). Mapping Sea-Level Change in Time, Space, and Probability. Annual Review of Environment and Resources, 43(1), 481–521. https://doi.org/10.1146/annurev-environ-102017-025826
Hu, B., Chen, J., & Zhang, X. (2019). Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors, 19(14), 3181. https://doi.org/10.3390/s19143181
Ingebritsen, S. E., & Galloway, D. L. (2014). Coastal subsidence and relative sea level rise. Environmental Research Letters, 9(9), 091002. https://doi.org/10.1088/1748-9326/9/9/091002
Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A., & Moore, J. C. (2016). Coastal sea level rise with warming above 2 °C. Proceedings of the National Academy of Sciences, 113(47), 13342–13347. https://doi.org/10.1073/pnas.1605312113
Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. (2011) Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. 108, 11017–11022. https://doi.org/10.1073/pnas.1015619108
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., Strauss, B. H., & Tebaldi, C. (2014). Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2(8), 383–406. https://doi.org/10.1002/2014EF000239
Koster, K., Stafleu, J., & Stouthamer, E. (2018). Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Netherlands Journal of Geosciences, 97(4), 215–227. https://doi.org/10.1017/njg.2018.11
Li, X., Huang, G., & Kong, Q. (2018). ATMOSPHERIC PHASE DELAY CORRECTION OF D-INSAR BASED ON SENTINEL-1A. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–3, 955–960. https://doi.org/10.5194/isprs-archives-XLII-3-955-2018
Lv, Y., Li, W., Wen, J., Xu, H., & Du, S. (2021). Population pattern and exposure under sea level rise: Low elevation coastal zone in the Yangtze River Delta, 1990–2100. Climate Risk Management, 33, 100348. https://doi.org/10.1016/j.crm.2021.100348
Minderhoud, P. S. J. (2019). The sinking mega-delta: Present and future subsidence of the Vietnamese Mekong delta. Utrecht Studies in Earth Sciences, 168. http://localhost/handle/1874/375843
Minderhoud, P. S. J., Middelkoop, H., Erkens, G., & Stouthamer, E. (2020). Groundwater extraction may drown mega-delta: Projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environmental Research Communications, 2(1), 011005. https://doi.org/10.1088/2515-7620/ab5e21
Muis S, Verlaan M, Winsemius H C, et al. (2016) A global reanalysis of storm surges and extreme sea levels. Nature communications, 7(1): 1-12. https://doi.org/10.1038/ncomms11969
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z
Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1), 450–487. https://doi.org/10.1002/2014JB011176
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., & Petzold, J. (2019). IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1(3).
Razvadauskas, F. V. (2019). Megacities: Developing Country Domination. London, UK: Euromonitor International.
Restrepo-Ángel, J. D., Mora-Páez, H., Díaz, F., Govorcin, M., Wdowinski, S., Giraldo-Londoño, L., Tosic, M., Fernández, I., Paniagua-Arroyave, J. F., & Duque-Trujillo, J. F. (2021). Coastal subsidence increases vulnerability to sea level rise over twenty first century in Cartagena, Caribbean Colombia. Scientific Reports, 11(1), 18873. https://doi.org/10.1038/s41598-021-98428-4
Ridder N N, Pitman A J, Westra S, et al. (2020). Global hotspots for the occurrence of compound events. Nature communications, 11(1): 1-10. https://doi.org/10.1038/s41467-020-19639-3
Rovere, A., Stocchi, P., & Vacchi, M. (2016). Eustatic and Relative Sea Level Changes. Current Climate Change Reports, 2(4), 221–231. https://doi.org/10.1007/s40641-016-0045-7
Shen, S.-L., & Xu, Y.-S. (2011). Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378–1392. https://doi.org/10.1139/t11-049
Shirzaei, M., & Bürgmann, R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science Advances, 4(3), eaap9234. https://doi.org/10.1126/sciadv.aap9234
Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. J. (2021). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40–58. https://doi.org/10.1038/s43017-020-00115-x
Tessler, Z. D., Vörösmarty, C. J., Overeem, I., & Syvitski, J. P. M. (2018). A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology, 305, 209–220. https://doi.org/10.1016/j.geomorph.2017.09.040
Takagi, H., Esteban, M., Mikami, T., & Fujii, D. (2016a). Projection of coastal floods in 2050 Jakarta. Urban Climate, 17, 135–145. https://doi.org/10.1016/j.uclim.2016.05.003
Takagi, H., Esteban, M., Mikami, T., Fujii, D., & Kurobe, S. (2016b). MECHANISMS OF COASTAL FLOODS IN JAKARTA: THE NEED FOR IMMEDIATE ACTION AGAINST LAND SUBSIDENCE. The Proceedings of the ICOPMAS 2016, 3.
Vermeer, M.; Rahmstorf, S. (2009) Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106, 21527–21532. https://doi.org/10.1073/pnas.0907765106
Wang, B., Chen, S., Zhang, K., & Shen, J. (1995). Potential impacts of sea-level rise on the Shanghai area. Journal of Coastal Research, 151–166. https://www.jstor.org/stable/25735706
Wang, J., Gao, W., Xu, S., & Yu, L. (2012). Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Climatic Change, 115(3–4), 537–558. https://doi.org/10.1007/s10584-012-0468-7
Wang, J., Yi, S., Li, M., Wang, L., & Song, C. (2018). Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Science of The Total Environment, 621, 228–234. https://doi.org/10.1016/j.scitotenv.2017.11.224
Xian, S., Yin, J., Lin, N., & Oppenheimer, M. (2018). Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai. Science of The Total Environment, 610–611, 1251–1261. https://doi.org/10.1016/j.scitotenv.2017.07.229
Xu, Y.-S., Ma, L., Du, Y.-J., & Shen, S.-L. (2012). Analysis of urbanisation-induced land subsidence in Shanghai. Natural Hazards, 63(2), 1255–1267. https://doi.org/10.1007/s11069-012-0220-7
Xue, Y.-Q., Zhang, Y., Ye, S.-J., Wu, J.-C., & Li, Q.-F. (2005). Land subsidence in China. Environmental Geology, 48(6), 713–720. https://doi.org/10.1007/s00254-005-0010-6
Yan, B., Li, S., Wang, J., Ge, Z., & Zhang, L. (2016). Socio-economic vulnerability of the megacity of Shanghai (China) to sea-level rise and associated storm surges. Regional Environmental Change, 16(5), 1443–1456. https://doi.org/10.1007/s10113-015-0878-y
Yang Y, Yin J, Zhang W, et al. (2021). Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow. Natural Hazards and Earth System Sciences, 21(11): 3563-3572. https://doi.org/10.5194/nhess-21-3563-2021
Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J. (2016). Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3), 685–693. https://doi.org/10.1007/s10040-015-1356-9
Yin, J., Yu, D., Yin, Z., Wang, J., & Xu, S. (2013). Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Climatic Change, 119(3–4), 919–932. https://doi.org/10.1007/s10584-013-0749-9
Yin, J., Yu, D., Yin, Z., Wang, J., & Xu, S. (2015). Modelling the anthropogenic impacts on fluvial flood risks in a coastal mega-city: A scenario-based case study in Shanghai, China. Landscape and Urban Planning, 136, 144–155. https://doi.org/10.1016/j.landurbplan.2014.12.009
Yin, J., Jonkman, S., Lin, N., Yu, D., Aerts, J., Wilby, R., Pan, M., Wood, E., Bricker, J., Ke, Q., Zeng, Z., Zhao, Q., Ge, J., & Wang, J. (2020). Flood Risks in Sinking Delta Cities: Time for a Reevaluation? Earth’s Future, 8(8). https://doi.org/10.1029/2020EF001614
Yin, J., Qing Zhao, & Dapeng Yu. (2019). Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. Journal of Hydrology, 571, 593-604. https://doi.org/10.1016/j.jhydrol.2019.02.015
Yin, J., Lin, N., Yang, Y., Pringle, W. J., Tan, J., Westerink, J. J., & Yu, D. (2021). Hazard Assessment for Typhoon‐Induced Coastal Flooding and Inundation in Shanghai, China. Journal of Geophysical Research: Oceans, 126(7). https://doi.org/10.1029/2021JC017319
Yu, L., Yang, T., Zhao, Q., Liu, M., & Pepe, A. (2017). The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis. Remote Sensing, 9(11), 1194. https://doi.org/10.3390/rs9111194
Yuill, B., Lavoie, D., & Reed, D. J. (2009). Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, 10054, 23–36. https://www.jstor.org/stable/25737466 DOI: https://doi.org/10.2112/SI54-012.1
Zhao, Q., Pepe, A., Gao, W., Lu, Z., Bonano, M., He, M. L., Wang, J., & Tang, X. (2015). A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1763–1781. https://doi.org/10.1109/JSTARS.2015.2402168
Zhao, Q., Ma, G., Wang, Q., Yang, T., Liu, M., Gao, W., Falabella, F., Mastro, P., & Pepe, A. (2019). Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 10–27. https://doi.org/10.1016/j.isprsjprs.2019.05.005
Zhang, Y., Wu, J., Xue, Y., Wang, Z., Yao, Y., Yan, X., & Wang, H. (2015). Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeology Journal, 23(8), 1851–1866. https://doi.org/10.1007/s10040-015-1302-x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











