Published

2025-07-16

The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China

Influencia del movimiento vertical de la tierra en zonas costeras sobre el aumento relativo del nivel del mar: estudio de caso en Shanghái, China

DOI:

https://doi.org/10.15446/esrj.v29n2.118098

Keywords:

Relative sea level rise, Vertical land motion, Shanghai, InSAR (en)
Aumento relativo del nivel del mar, movimiento vertical de la tierra, Shanghái, Interferométrico de Apertura Sintética (es)

Downloads

Authors

  • Beining Wen College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi, China
  • Miao Yu Shandong Xinhui Construction Group Co., LTD, Dongying 257901, Dongying, Shandong, China
  • Chong Liu School of Economics & Management , Northwest University, Xi'an 710127, Shaanxi, China
  • Yan Jiao Mobile Postdoctoral Research Station of Public Administration
  • Qihang Kai Xi’an City Planning & Design institute, No. 178 South Laodong Road, Xi’an 710082, Shaanxi, China

Understanding the current Vertical Land Motion (VLM), including subsidence or uplift, is the basis for projecting Relative Sea Level Rise (RLSR) and estimating related risks. However, in Shanghai, the impacts of the spatiotemporal change of VLM are little known. The purpose of this study was to quantify the impact of VLM on RSLR and investigate the spatiotemporal evolution characteristics of VLM through tide gauge records, satellite altimetry observations, and Interferometric Synthetic Aperture Radar (InSAR) measurements. The calculations indicated that the RSLR (5.67±0.58 mm/year) from 1969 to 2019 was approximately twice the SLR trend (2.44±0.28 mm/year) from 1993 to 2019. The VLM, especially subsidence, is the main driver of RSLR. Moreover, spatial and temporal patterns of VLM are highly uneven and nonlinear. These results reveal that VLM is the main driver of RSLR. Unfortunately, previous studies have mostly underestimated or overlooked the impact of VLM on the risks of RSLR and subsequent coastal flooding. Thus, prevention strategies for controlling VLM are warranted to minimize the negative impact related to the RSLR. Our research provides a theoretical basis for urban disaster prevention in Shanghai and the planning of coastal cities worldwide.

Comprender el movimiento vertical de la tierra (VLM) actual, incluida la subsidencia y la elevación, es la base para proyectar el aumento relativo del nivel del mar (RLSR) y estimar los riesgos relacionados. Sin embargo, en Shanghái, los impactos del cambio espaciotemporal del VLM son poco conocidos. El propósito de este estudio fue cuantificar el impacto del VLM en el RSLR e investigar las características de evolución espaciotemporal del VLM a través de registros de mareógrafos, observaciones de altimetría satelital y mediciones del Radar Interferométrico de Apertura Sintética (InSAR). Los cálculos indicaron que el RSLR (5,67 ± 0,58 mm/año) de 1969 a 2019 fue aproximadamente el doble de la tendencia del SLR (2,44 ± 0,28 mm/año) de 1993 a 2019. El VLM, especialmente la subsidencia, es el principal impulsor del RSLR. Además, los patrones espaciales y temporales del VLM son altamente desiguales y no lineales. Estos resultados revelan que el VLM es el principal impulsor del RSLR. Desafortunadamente, estudios previos han subestimado o pasado por alto, en su mayoría, el impacto de la VLM en los riesgos de RSLR y las subsiguientes inundaciones costeras. Por lo tanto, se justifican estrategias de prevención para controlar la VLM a fin de minimizar el impacto negativo relacionado con la RSLR. Nuestra investigación proporciona una base teórica para la prevención de desastres urbanos en Shanghái y la planificación de ciudades costeras en todo el mundo.

References

Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771. https://doi.org/10.1007/s11069-011-9866-9

Adelekan I O. (2010). Vulnerability of poor urban coastal communities to flooding in Lagos, Nigeria. Environment and Urbanization, 22, 433-450. https://doi.org/10.1177/0956247810380141

Balica S F, Wright N G, Van Der Meulen F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 64: 73-105. https://doi.org/10.1007/s11069-012-0234-1

Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., & Tsuchiya, N. (2021). Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability, 50, 87–97. https://doi.org/10.1016/j.cosust.2021.02.010

Chai, J.-C., Shen, S.-L., Zhu, H.-H., & Zhang, X.-L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Geotechnique, 54(2), 143–147. https://doi.org/10.1680/geot.2004.54.2.143

Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. JOSA A, 18(2), 338–351. https://doi.org/10.1364/JOSAA.18.000338

Chen, C. W., & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. https://doi.org/10.1109/TGRS.2002.802453

Chen Xiqing. (1991). Sea-level changes since the early 1920’s from the long records of two tidal gauges in Shanghai, China. Journal of Coastal Research, 787–799. https://www.jstor.org/stable/4297894

Cheng, H. Q., Chen, J. Y., Chen, Z. J., Ruan, R. L., Xu, G. Q., Zeng, G., Zhu, J. R., Dai, Z. J., Chen, X. Y., Gu, S. H., Zhang, X. L., & Wang, H. M. (2018). Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast. Engineering, 4(1), 156–163. https://doi.org/10.1016/j.eng.2018.02.002

Dokka, R. K. (2006). Modern-day tectonic subsidence in coastal Louisiana. Geology, 34(4), 281–284. https://doi.org/10.1130/G22264.1

Du S, Cheng X, Huang Q, et al. (2019). Brief communication: Rethinking the 1998 China floods to prepare for a nonstationary future. Natural Hazards and Earth System Sciences, 19(3): 715-719. https://doi.org/10.5194/nhess-19-715-2019

Eggleston, J., & Pope, J. (2013). Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. US Geological Survey Circular, 1392, 30. https://dx.doi.org/10.3133/cir1392

Esteban, M., Takagi, H., Nicholls, R. J., Fatma, D., Pratama, M. B., Kurobe, S., Yi, X., Ikeda, I., Mikami, T., Valenzuela, P., & Avelino, E. (2020). Adapting ports to sea-level rise: Empirical lessons based on land subsidence in Indonesia and Japan. Maritime Policy & Management, 47(7), 937–952. https://doi.org/10.1080/03088839.2019.1634845

Fang J, Liu W, Yang S, et al. (2017). Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China. Ocean & Coastal Management, 139: 125-140. https://doi.org/10.1016/j.ocecoaman.2017.02.003

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., & Roth, L. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183

Fuchs, R. J. (2010). Cities at Risk: Asia’s Coastal Cities in an Age of Climate Change. 12.

Gens, R., & VAN GENDEREN, J. L. (1996). Review Article SAR interferometry—Issues, techniques, applications. International Journal of Remote Sensing, 17(10), 1803–1835. https://doi.org/10.1080/01431169608948741

Gómez, J. F., Kwoll, E., Walker, I. J., & Shirzaei, M. (2021). Vertical Land Motion as a Driver of Coastline Changes on a Deltaic System in the Colombian Caribbean. Geosciences, 11(7), 300. https://doi.org/10.3390/geosciences11070300

Higgins, S. A. (2016). Review: Advances in delta-subsidence research using satellite methods. Hydrogeology Journal, 24(3), 587–600. https://doi.org/10.1007/s10040-015-1330-6

Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3(9), 802–806. https://doi.org/10.1038/nclimate1979

Holzer, ThomasL., & Johnson, A. I. (1985). Land subsidence caused by ground water withdrawal in urban areas. GeoJournal, 11(3). https://doi.org/10.1007/BF00186338

Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K., & Shaw, T. A. (2018). Mapping Sea-Level Change in Time, Space, and Probability. Annual Review of Environment and Resources, 43(1), 481–521. https://doi.org/10.1146/annurev-environ-102017-025826

Hu, B., Chen, J., & Zhang, X. (2019). Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors, 19(14), 3181. https://doi.org/10.3390/s19143181

Ingebritsen, S. E., & Galloway, D. L. (2014). Coastal subsidence and relative sea level rise. Environmental Research Letters, 9(9), 091002. https://doi.org/10.1088/1748-9326/9/9/091002

Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A., & Moore, J. C. (2016). Coastal sea level rise with warming above 2 °C. Proceedings of the National Academy of Sciences, 113(47), 13342–13347. https://doi.org/10.1073/pnas.1605312113

Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. (2011) Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. 108, 11017–11022. https://doi.org/10.1073/pnas.1015619108

Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., Strauss, B. H., & Tebaldi, C. (2014). Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2(8), 383–406. https://doi.org/10.1002/2014EF000239

Koster, K., Stafleu, J., & Stouthamer, E. (2018). Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Netherlands Journal of Geosciences, 97(4), 215–227. https://doi.org/10.1017/njg.2018.11

Li, X., Huang, G., & Kong, Q. (2018). ATMOSPHERIC PHASE DELAY CORRECTION OF D-INSAR BASED ON SENTINEL-1A. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–3, 955–960. https://doi.org/10.5194/isprs-archives-XLII-3-955-2018

Lv, Y., Li, W., Wen, J., Xu, H., & Du, S. (2021). Population pattern and exposure under sea level rise: Low elevation coastal zone in the Yangtze River Delta, 1990–2100. Climate Risk Management, 33, 100348. https://doi.org/10.1016/j.crm.2021.100348

Minderhoud, P. S. J. (2019). The sinking mega-delta: Present and future subsidence of the Vietnamese Mekong delta. Utrecht Studies in Earth Sciences, 168. http://localhost/handle/1874/375843

Minderhoud, P. S. J., Middelkoop, H., Erkens, G., & Stouthamer, E. (2020). Groundwater extraction may drown mega-delta: Projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environmental Research Communications, 2(1), 011005. https://doi.org/10.1088/2515-7620/ab5e21

Muis S, Verlaan M, Winsemius H C, et al. (2016) A global reanalysis of storm surges and extreme sea levels. Nature communications, 7(1): 1-12. https://doi.org/10.1038/ncomms11969

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z

Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1), 450–487. https://doi.org/10.1002/2014JB011176

Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., & Petzold, J. (2019). IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1(3).

Razvadauskas, F. V. (2019). Megacities: Developing Country Domination. London, UK: Euromonitor International.

Restrepo-Ángel, J. D., Mora-Páez, H., Díaz, F., Govorcin, M., Wdowinski, S., Giraldo-Londoño, L., Tosic, M., Fernández, I., Paniagua-Arroyave, J. F., & Duque-Trujillo, J. F. (2021). Coastal subsidence increases vulnerability to sea level rise over twenty first century in Cartagena, Caribbean Colombia. Scientific Reports, 11(1), 18873. https://doi.org/10.1038/s41598-021-98428-4

Ridder N N, Pitman A J, Westra S, et al. (2020). Global hotspots for the occurrence of compound events. Nature communications, 11(1): 1-10. https://doi.org/10.1038/s41467-020-19639-3

Rovere, A., Stocchi, P., & Vacchi, M. (2016). Eustatic and Relative Sea Level Changes. Current Climate Change Reports, 2(4), 221–231. https://doi.org/10.1007/s40641-016-0045-7

Shen, S.-L., & Xu, Y.-S. (2011). Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378–1392. https://doi.org/10.1139/t11-049

Shirzaei, M., & Bürgmann, R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science Advances, 4(3), eaap9234. https://doi.org/10.1126/sciadv.aap9234

Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. J. (2021). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40–58. https://doi.org/10.1038/s43017-020-00115-x

Tessler, Z. D., Vörösmarty, C. J., Overeem, I., & Syvitski, J. P. M. (2018). A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology, 305, 209–220. https://doi.org/10.1016/j.geomorph.2017.09.040

Takagi, H., Esteban, M., Mikami, T., & Fujii, D. (2016a). Projection of coastal floods in 2050 Jakarta. Urban Climate, 17, 135–145. https://doi.org/10.1016/j.uclim.2016.05.003

Takagi, H., Esteban, M., Mikami, T., Fujii, D., & Kurobe, S. (2016b). MECHANISMS OF COASTAL FLOODS IN JAKARTA: THE NEED FOR IMMEDIATE ACTION AGAINST LAND SUBSIDENCE. The Proceedings of the ICOPMAS 2016, 3.

Vermeer, M.; Rahmstorf, S. (2009) Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106, 21527–21532. https://doi.org/10.1073/pnas.0907765106

Wang, B., Chen, S., Zhang, K., & Shen, J. (1995). Potential impacts of sea-level rise on the Shanghai area. Journal of Coastal Research, 151–166. https://www.jstor.org/stable/25735706

Wang, J., Gao, W., Xu, S., & Yu, L. (2012). Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Climatic Change, 115(3–4), 537–558. https://doi.org/10.1007/s10584-012-0468-7

Wang, J., Yi, S., Li, M., Wang, L., & Song, C. (2018). Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Science of The Total Environment, 621, 228–234. https://doi.org/10.1016/j.scitotenv.2017.11.224

Xian, S., Yin, J., Lin, N., & Oppenheimer, M. (2018). Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai. Science of The Total Environment, 610–611, 1251–1261. https://doi.org/10.1016/j.scitotenv.2017.07.229

Xu, Y.-S., Ma, L., Du, Y.-J., & Shen, S.-L. (2012). Analysis of urbanisation-induced land subsidence in Shanghai. Natural Hazards, 63(2), 1255–1267. https://doi.org/10.1007/s11069-012-0220-7

Xue, Y.-Q., Zhang, Y., Ye, S.-J., Wu, J.-C., & Li, Q.-F. (2005). Land subsidence in China. Environmental Geology, 48(6), 713–720. https://doi.org/10.1007/s00254-005-0010-6

Yan, B., Li, S., Wang, J., Ge, Z., & Zhang, L. (2016). Socio-economic vulnerability of the megacity of Shanghai (China) to sea-level rise and associated storm surges. Regional Environmental Change, 16(5), 1443–1456. https://doi.org/10.1007/s10113-015-0878-y

Yang Y, Yin J, Zhang W, et al. (2021). Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow. Natural Hazards and Earth System Sciences, 21(11): 3563-3572. https://doi.org/10.5194/nhess-21-3563-2021

Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J. (2016). Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3), 685–693. https://doi.org/10.1007/s10040-015-1356-9

Yin, J., Yu, D., Yin, Z., Wang, J., & Xu, S. (2013). Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Climatic Change, 119(3–4), 919–932. https://doi.org/10.1007/s10584-013-0749-9

Yin, J., Yu, D., Yin, Z., Wang, J., & Xu, S. (2015). Modelling the anthropogenic impacts on fluvial flood risks in a coastal mega-city: A scenario-based case study in Shanghai, China. Landscape and Urban Planning, 136, 144–155. https://doi.org/10.1016/j.landurbplan.2014.12.009

Yin, J., Jonkman, S., Lin, N., Yu, D., Aerts, J., Wilby, R., Pan, M., Wood, E., Bricker, J., Ke, Q., Zeng, Z., Zhao, Q., Ge, J., & Wang, J. (2020). Flood Risks in Sinking Delta Cities: Time for a Reevaluation? Earth’s Future, 8(8). https://doi.org/10.1029/2020EF001614

Yin, J., Qing Zhao, & Dapeng Yu. (2019). Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. Journal of Hydrology, 571, 593-604. https://doi.org/10.1016/j.jhydrol.2019.02.015

Yin, J., Lin, N., Yang, Y., Pringle, W. J., Tan, J., Westerink, J. J., & Yu, D. (2021). Hazard Assessment for Typhoon‐Induced Coastal Flooding and Inundation in Shanghai, China. Journal of Geophysical Research: Oceans, 126(7). https://doi.org/10.1029/2021JC017319

Yu, L., Yang, T., Zhao, Q., Liu, M., & Pepe, A. (2017). The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis. Remote Sensing, 9(11), 1194. https://doi.org/10.3390/rs9111194

Yuill, B., Lavoie, D., & Reed, D. J. (2009). Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, 10054, 23–36. https://www.jstor.org/stable/25737466 DOI: https://doi.org/10.2112/SI54-012.1

Zhao, Q., Pepe, A., Gao, W., Lu, Z., Bonano, M., He, M. L., Wang, J., & Tang, X. (2015). A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1763–1781. https://doi.org/10.1109/JSTARS.2015.2402168

Zhao, Q., Ma, G., Wang, Q., Yang, T., Liu, M., Gao, W., Falabella, F., Mastro, P., & Pepe, A. (2019). Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 10–27. https://doi.org/10.1016/j.isprsjprs.2019.05.005

Zhang, Y., Wu, J., Xue, Y., Wang, Z., Yao, Y., Yan, X., & Wang, H. (2015). Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeology Journal, 23(8), 1851–1866. https://doi.org/10.1007/s10040-015-1302-x

How to Cite

APA

Wen, B., Yu, M., Liu, C., Jiao, Y. & Kai, Q. (2025). The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China. Earth Sciences Research Journal, 29(2). https://doi.org/10.15446/esrj.v29n2.118098

ACM

[1]
Wen, B., Yu, M., Liu, C., Jiao, Y. and Kai, Q. 2025. The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China. Earth Sciences Research Journal. 29, 2 (Jul. 2025). DOI:https://doi.org/10.15446/esrj.v29n2.118098.

ACS

(1)
Wen, B.; Yu, M.; Liu, C.; Jiao, Y.; Kai, Q. The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China. Earth sci. res. j. 2025, 29.

ABNT

WEN, B.; YU, M.; LIU, C.; JIAO, Y.; KAI, Q. The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China. Earth Sciences Research Journal, [S. l.], v. 29, n. 2, 2025. DOI: 10.15446/esrj.v29n2.118098. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/118098. Acesso em: 29 dec. 2025.

Chicago

Wen, Beining, Miao Yu, Chong Liu, Yan Jiao, and Qihang Kai. 2025. “The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China”. Earth Sciences Research Journal 29 (2). https://doi.org/10.15446/esrj.v29n2.118098.

Harvard

Wen, B., Yu, M., Liu, C., Jiao, Y. and Kai, Q. (2025) “The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China”, Earth Sciences Research Journal, 29(2). doi: 10.15446/esrj.v29n2.118098.

IEEE

[1]
B. Wen, M. Yu, C. Liu, Y. Jiao, and Q. Kai, “The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China”, Earth sci. res. j., vol. 29, no. 2, Jul. 2025.

MLA

Wen, B., M. Yu, C. Liu, Y. Jiao, and Q. Kai. “The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China”. Earth Sciences Research Journal, vol. 29, no. 2, July 2025, doi:10.15446/esrj.v29n2.118098.

Turabian

Wen, Beining, Miao Yu, Chong Liu, Yan Jiao, and Qihang Kai. “The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China”. Earth Sciences Research Journal 29, no. 2 (July 16, 2025). Accessed December 29, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/118098.

Vancouver

1.
Wen B, Yu M, Liu C, Jiao Y, Kai Q. The influence of vertical coastal land movement on relative sea level rise: a case study of Shanghai, China. Earth sci. res. j. [Internet]. 2025 Jul. 16 [cited 2025 Dec. 29];29(2). Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/118098

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

194

Downloads

Download data is not yet available.