Published
Transitional relationships among typical loess geomorphologic types: Loess Plateau of China
Relaciones de transición entre tipos geomorfológicos típicos de loess: meseta de loess de China
DOI:
https://doi.org/10.15446/esrj.v29n1.118386Keywords:
transitional relationship, digital index systems, typical loess geomorphologic type, digital geomorphologic database, Landsat TM/ETM+ images, SRTM1 DEM data, Loess Plateau (en)relación transicional, sistemas de indexación digital, tipos geomorfológicos de loess, bases de datos geomorfológicas digitales, imágenes Landsat TM/ETM+, información SRTM1 DEM, Meseta de Loess (es)
Downloads
Taking the distribution area of typical loess geomorphologic types in the Loess Plateau of China as the study area, this research aims to explore the transitional relationships among typical loess geomorphologic types based on their constructed digital index systems using the data sources of digital geomorphologic database, Landsat TM/ETM+ images and SRTM1 DEM data. Based on Landsat TM/ETM+ images, the digital geomorphologic database was firstly checked and improved using visual interpretation combined with expert knowledge methods, so as to acquire the precise spatial distribution of the typical loess geomorphologic types. Then, the digital index systems for the typical loess geomorphologic types were constructed, which included topographic indexes, quantitative indexes from topographic profile method and remote sensing indexes. Finally, the transitional relationships among the typical loess geomorphologic types were explored based on the constructed digital index systems and the spatial distribution pattern on the remote sensing images. The research results show: loess tableland may transform to loess ridge or loess knoll, and loess ridge may transform to loess knoll. As to morphologic types, loess tableland may transform to loess residual tableland, and then to loess beam tableland; loess wide acclivitous ridge may transform to loess narrow acclivitous ridge, and then to loess knoll ridge. For the valley shape types of the loess ridge and loess knoll, the shallow and high valley may transform to deep and high valley, and then to shallow and low valley. This research is meaningful in the fields such as digital mapping of loess geomorphology, water and soil loss, soil erosion and digital topographic analysis.
Este trabajo toma como objeto de estudio el área de distribución de los tipos geomorfológicos de loess típicos en la Meseta de Loess de China, con el objetivo de explorar las relaciones de transición entre los tipos geomorfológicos de loess típicos en función de sus sistemas de índices digitales a través de bases de datos geomorfológicos digitales, imágenes Landsat TM/ETM+ y datos DEM SRTM1. Con base en las imágenes Landsat TM/ETM+, la base de datos geomorfológica digital fue verificada y mejorada a través de interpretación visual combinada con métodos de expertos para adquirir la distribución espacial precisa de los tipos geomorfológicos típicos de loess. Luego se construyeron los sistemas de indexación digital para esta clase de loess, los cuales incluyen índices topográficos, índices cuantitativos tomados de métodos de perfil topográfico e índices remotos. Finalmente, se exploraron las relaciones transicionales entre los tipos gemorfológicos de loess con base en los sistemas de indexación digital construidos y los patrones de distribución espacial en las imágenes de detección remota. Los resultados de la investigación muestran que los loess tipo meseta pueden transformarse en loess tipo crestas o montículos, y las crestas pueden transformarse en loess tipo montículos. En cuanto a los tipos morfológicos, los loess tipo meseta pueden transformarse en meseta residual y luego en meseta viga; los loess tipo cresta ancha e inclinada pueden transformarse en cresta estrecha e inclinada y luego en cresta de montículo. Para los tipos de forma de valle de la cresta loess y montículo loess, el valle superficial y alto puede transformarse en valle profundo y alto, y luego en valle superficial y bajo. Esta investigación es significativa en campos como el mapeo digital de la geomorfología del loess, la pérdida de agua y suelo, la erosión del suelo y el análisis topográfico digital.
References
Ballantine, J. C., Okin, G. S., Prentiss, D. E., & Roberts, D. A. (2005). Mapping North African landforms using continental scale unmixing of MODIS imagery. Remote Sensing of Environment, 97(4), 470-483. https://doi.org/10.1016/j.rse.2005.04.023
Bishop, M. A. (2007a). Point pattern analysis of eruption points for the Mount Gambier Volcanic sub-Province: A geographical approach to the understanding of volcano distribution. Area, 39(2), 230–241. DOI: https://doi.org/10.1111/j.1475-4762.2007.00729.x
Bishop, M. A. (2007). Point pattern analysis of north polar crescentic dunes, Mars: A geography of dune self-organization. Icarus, 191(1), 151-157. https://doi.org/10.1016/j.icarus.2007.04.027
Bishop, M. A. (2009). A generic classification for the morphological and spatial complexity of volcanic (and other) landforms. Geomorphology, 111(1-2), 104-109. https://doi.org/10.1016/j.geomorph.2008.10.020
Bue, B., & Stepinski, T. (2006). Automated classification of landforms on Mars. Computers & Geosciences, 32(5), 604-614. https://doi.org/10.1016/j.cageo.2005.09.004
Bullard, J. E., White, K., & Livingstone, I. (2011). Morphometric analysis of aeolian bedforms in the Namib Sand Sea using ASTER data. Earth Surface Processes and Landforms, 36(11), 1534-1549. https://doi.org/10.1002/esp.2189
Cheng, W. M., Zhao, S. M., Zhou, C. H., & Chen, X. (2013). Topographic characteristics for the geomorphologic Zones in the northwestern edge of the Qinghai-Tibet Plateau. Journal of Mountain Science, 10(6), 1039-1049. https://doi.org/10.1007/s11629-013-2582-z
Cheng, W., Zhou, C., Chai, H., Zhao, S., Liu , H., & Zhou, Z. (2011a). Research and compilation of the Geomorphologic Atlas of the People’s Republic of China (1:1,000,000). Journal of Geographical Sciences, 21, 89-100. https://doi.org/10.1007/s11442-011-0831-z
Cheng, W., Zhou, C., Li, B., Shen, Y., & Zhang, B. (2011b). Structure and contents of layered classification system of digital geomorphology for China. Journal of Geographical Sciences, 21, 771-790. https://doi.org/10.1007/s11442-011-0879-9
Drăguţ, L., & Eisank, C. (2011). Object representations at multiple scales from digital elevation models. Geomorphology, 129(3-4), 183-189. https://doi.org/10.1016/j.geomorph.2011.03.003
Drăguţ, L., & Eisank, C. (2012). Automated object-based classification of topography from SRTM data. Geomorphology, 141-142, 21-33. https://doi.org/10.1016/j.geomorph.2011.12.001
Hampton, S., & Cole, J. (2009). Lyttelton Volcano, Banks Peninsula, New Zealand: Primary volcanic landforms and eruptive centre identification. Geomorphology, 104(3-4), 284-298. https://doi.org/10.1016/j.geomorph.2008.09.005
Hashimoto, A., Oguchi, T., Hayakawa, Y., Lin, Z., Saito, K., & Wasklewicz, T. A. (2008). GIS analysis of depositional slope change at alluvial-fan toes in Japan and the American Southwest. Geomorphology, 100(1-2), 120-130. https://doi.org/10.1016/j.geomorph.2007.10.027
Hayakawa, Y. S., & Oguchi, T. (2009). GIS analysis of fluvial knickzone distribution in Japanese mountain watersheds. Geomorphology, 111(1-2), 27-37. https://doi.org/10.1016/j.geomorph.2007.11.016
Kocurek, G., & Ewing, R. C. (2005). Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns. Geomorphology, 72(1-4), 94-105. https://doi.org/10.1016/j.geomorph.2005.05.005
Li, F. Y., Tang, G. A., Jia, Y. N., & Cao, Z. D. (2007). Scale Effect and Spatial Distribution of Slope Spectrum's Information Entropy. Journal of Geo-information Science, 9(4), 13-18. DOI: 10.3969/j.issn.1560-8999.2007.04.003
Liang, G. L., Chen, H., Cai, Q. G., & Hu, W. S. (2004). Research Progress of Modern Topographic Evolvement and Landform Erosion in Loess Plateau. Research of Soil and Water Conservation, 11(4): 131-137. DOI: 10.3969/j.issn.1005-3409.2004.04.031
Lin, Z., Oguchi, T., Chen, Y. G., & Saito, K. (2009). Constant-slope alluvial fans and source basins in Taiwan. Geology, 37(9), 787–790. DOI: 10.1130/G25675A.1
Ma, N. X. (1996). Relationship between loess geomorphic evolution and soil erosion. Bulletin of Soil and Water Conservation, 16(2), 6-10.
MacMillan, R., Pettapiece, W., Nolan, S., & Goddard, T. (2000). A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113(1), 81-109. https://doi.org/10.1016/S0165-0114(99)00014-7
MacMillan, R., Jones, R., & McNabb, D. H. (2004). Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs). Computers, Environment and Urban Systems, 28(3), 175-200. https://doi.org/10.1016/S0198-9715(03)00019-X
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
Pennock, D., & Corre, M. (2001). Development and application of landform segmentation procedures. Soil and Tillage Research, 58(3-4), 151-162. https://doi.org/10.1016/S0167-1987(00)00165-3
Remondo, J., & Oguchi, T. (2009). GIS and SDA applications in geomorphology. Geomorphology, 111(1-2), 1-3. https://doi.org/10.1016/j.geomorph.2009.04.015
Remortel, R. V., Maichle, R., & Hickey, R. (2004). Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevation data using a C++ executable. Computers & Geosciences, 30(9-10), 1043-1053. https://doi.org/10.1016/j.cageo.2004.08.001
Saadat, H., Bonnell, R., Sharifi, F., Mehuys, G., Namdar, M., & Ale-Ebrahim, S. (2008). Landform classification from a digital elevation model and satellite imagery. Geomorphology, 100(3-4), 453-464. https://doi.org/10.1016/j.geomorph.2008.01.011
Saito, K., & Oguchi, T. (2005). Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines. Geomorphology, 70(1-2), 147-162. https://doi.org/10.1016/j.geomorph.2005.04.006
Sang, G. S., Chen, X., Chen, X., & Che, Z. L. (2007). Formation model and geomorphic evolution of loess hilly landforms. Arid Land Geography, 30(3), 375–380. DOI: 10.1016/S1872-5791(07)60044-X
Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental quantitative methods of land surface analysis. Geoderma, 107(1-2), 1-32. https://doi.org/10.1016/S0016-7061(01)00136-7
Székely, B., & Karátson, D. (2004). DEM-based morphometry as a tool for reconstructing primary volcanic landforms: Examples from the Börzsöny Mountains, Hungary. Geomorphology, 63(1-2), 25-37. https://doi.org/10.1016/j.geomorph.2004.03.008
Tang, G., Ge, S., Li, F., & Zhou, J. (2005). Review of Digital Elevation Model (DEM) Based Research on China Loess Plateau. Journal of Mountain Science, 2(3), 265-270. https://doi.org/10.1007/BF02973200
Tang, G., Li, F., Liu, X., Long, Y., & Yang, X. (2008). Research on the slope spectrum of the Loess Plateau. Science in China Series E: Technological Sciences, 51, 175-185. https://doi.org/10.1007/s11431-008-5002-9
Wang, C., Tang, G. A., Li, F. Y., Zhu, X. J., & Jia, Y. N. (2008). The Uncertainty of Slope Spectrum Derived from Grid Digital Elevation Model. Geo-Information Science, 10, 539–544. DOI: 10.3969/j.issn.1560-8999.2008.04.019
Werner, B. T. (1999). Complexity in Natural Landform Patterns. Science, 284(5411), 102-104. https://doi.org/10.1126/science.284.5411.102
Wolinsky, M. A., & Pratson, L. F. (2005). Constraints on landscape evolution from slope histograms. Geology, 3(6), 477-480. https://doi.org/10.1130/G21296.1
Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47-56. https://doi.org/10.1002/esp.3290120107
Zhao, S., & Cheng, W. (2014). Transitional relation exploration for typical loess geomorphologic types based on slope spectrum characteristics. Earth Surface Dynamics, 2, 433–441. https://doi.org/10.5194/esurf-2-433-2014
Zhao, S., Cheng, W., Zhou, C., Liu, H., Su, Q., Zhang, S., He, W., Wang, L., & Wu, W. (2017). Using MLR to model the vertical error distribution of ASTER GDEMV2 data based on ICEsat/GLA14 data in the Loess Plateau of China. Zeitschrift für Geomorphologie, Supplementary Issues, 61(2), 9-26. DOI: 10.1127/ZFG_SUPPL/2016/0325
Zhou, Y., Tang, G. A., Yang, X., Xiao, C. C., Zhang, Y., & Luo, M. L. (2010). Positive and negative terrains on northern Shaanxi Loess Plateau. Journal of Geographical Sciences, 20(1), 64-76. https://doi.org/10.1007/s11442-010-0064-6
Zhu, X., Band, L., Vertessy, R., & Dutton, B. (1997). Derivation of Soil Properties Using a Soil Land Inference Model (SoLIM). Soil Science Society of America Journal, 61(2), 523-533. https://doi.org/10.2136/sssaj1997.03615995006100020022x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.