Published

2025-07-16

Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers

Evaluación de la precisión de la solución PPP utilizando receptores GNSS estándar

Keywords:

GNSS-RTK, PPP solution, N3 GNSS, convergence, PPP accuracy (en)
Estaciones GNSS-RTK, solución de posicionamiento preciso punto a punto, receptor N3, convergencia meridiana, precisión (es)

Downloads

Authors

The introduction of the free PPP solution by the BDS-3 system and its published applications offers a feasible opportunity to conduct surveying tasks without the need to establish base stations. This paper examines the accuracy of the free PPP solution using a standard receiver integrated with this functionality to verify the technical specifications published in its documentation. The study utilises a ComNav N3 receiver to collect coordinate data from the PPP and near-baseline single-base RTK solutions for accuracy assessment. The results indicate that parameters such as the time to achieve a fixed solution and the reported accuracy align closely with the technical specifications. Additionally, the determination of relative distances and height differences between points in the designed experiment shows equivalence between the PPP solution and the RTK solution.

El lanzamiento de una solución gratuita de posicionamiento preciso punto a punto (PPP) por el sistema BDS-3 y sus aplicaciones presentan una oportunidad factible de realizar tareas de sondeo sin la necesidad de establecer estaciones base. Este artículo examina la precisión de la solución PPP a través de un receptor estandar integrado con la funcionalidad de verificar las especificaciones técnicas publicadas en su documentación. Durante el estudio se utilizó un receptor ComNav N3 para recolectar datos de coordenadas del PPP y soluciones de base RTK para comparar la precisión. Los resultados indican que parámetros como el tiempo de adquisicion de respuesta y la precisión reportada se alinean con las especificaciones técnicas. Adicionalmente, la determinación de distancias relativas y el peso de las diferencias entre puntos en el experimento diseñado muestran una equivalencia entre la solución PPP y la solución RTK.

References

Charles D, G., & Paul R, W. (2006). Adjustment Computations (Fourth Edi). John Wiley & Sons, INC.

China Satellite Navigation Office. (2019a). BeiDou Navigation Satellite System Signal In Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b.

China Satellite Navigation Office. (2019b). Development of the BeiDou Navigation Satellite System (Version 4.0) (Issue December). http://en.beidou.gov.cn/SYSTEMS/Officialdocument/

Comnav Tech. (2021). N3_IMU_GNSS_Receiver. https://www.comnavtech.com/uploads/soft/20241230/ceb05da10106541418e6d11c1d31c8c8.pdf

ComNav Technology Ltd. (2020). K803 GNSS Module 30. https://www.comnavtech-ag.com/wp-content/uploads/2023/07/SinoGNSS-K803-GNSS-OEM-Module.pdf

El-Mowafy, A. (2012). Precise Real-Time Positioning Using Network RTK. In Global Navigation Satellite Systems: Signal, Theory and Applications (Issue February 2012, pp. 161–187). InTech. https://doi.org/10.5772/29502

Elsheikh, M., Iqbal, U., Noureldin, A., & Korenberg, M. (2023). The Implementation of Precise Point Positioning (PPP): A Comprehensive Review. Sensors Review, 23, 1–25. https://doi.org/https://doi.org/10.3390/s23218874

European GNSS Supervisory Authority. (2023). Galileo High Accuracy Service : Service Definition Document (HAS SDD) (Issue 1). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-HAS-SDD_v1.0.pdf

He, Q., Chen, L., Liu, L., Zhao, D., Gong, X., Lou, Y., & Guan, Q. (2023). Long-Term Performance Evaluation of BeiDou PPP-B2b Products and Its Application in Time Service. Remote Sensing, 15(5), 1–16. https://doi.org/10.3390/rs15051358

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.

Hou, Z., & Zhou, F. (2023). Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo. Remote Sensing, 15(3). https://doi.org/10.3390/rs15030807

Li, X., & Pan, L. (2021). Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers. In Remote Sensing (Vol. 13, Issue 19). https://doi.org/10.3390/rs13193905

Liu, T., Yuan, Y., Zhang, B., Wang, N., Tan, B., & Chen, Y. (2017). Evaluation of the Integrity Risk for Precise Point Positioning. Journal of Geodesy, 91(3), 253–268. https://doi.org/10.1007/s00190-016-0960-3

Liu, Y., Yang, C., & Zhang, M. (2022). Comprehensive Analyses of PPP‐B2b Performance in China and Surrounding Areas. Remote Sensing, 14(3), 1–28. https://doi.org/10.3390/rs14030643

Lu, X., Chen, L., Shen, N., Wang, L., Jiao, Z., & Chen, R. (2021). Decoding PPP Corrections from BDS B2b Signals Using a Software- defined Receiver:an Initial Performance Evaluation. IEEE Sensors Journal, 21(6), 7871–7883.

Ministry of Natural Resources and Environment. (2015). Circular No. 68/2015/TT-BTNMT of the Ministry of Natural Resources and Environment: Technical regulations for direct terrain measurement to serve the establishment of topographic maps and geographic database at 1:500 scale, 1:1000, 1:2000, 1:5000.

Naciri, N., Yi, D., Bisnath, S., de Blas, F. J., & Capua, R. (2023). Assessment of Galileo High Accuracy Service (HAS) test signals and preliminary positioning performance. GPS Solutions, 27(2). https://doi.org/10.1007/s10291-023-01410-y

Pintor, P., Lopez-Martinez, M., Gonzalez, E., Safar, J., & Boyle, R. (2023). Testing Galileo High-Accuracy Service (HAS) in Marine Operations. Journal of Marine Science and Engineering, 11(2375), 1–13. https://doi.org/https://doi.org/10.3390/jmse11122375

Tang, J., Lyu, D., Zeng, F., Ge, Y., & Zhang, R. (2022). Comprehensive Analysis of PPP-B2b Service and Its Impact on BDS-3/GPS Real-Time PPP Time Transfer. Remote Sensing, 14(21), 1–22. https://doi.org/10.3390/rs14215366

Tran, D. T., Nguyen, D. H., Vu, N. Q., & Nguyen, Q. L. (2023). Crustal displacement in Vietnam using CORS data during 2018-2021. Earth Sciences Research Journal, 27(1), 27–36. https://doi.org/10.15446/esrj.v27n1.102630

Tran Dinh Trong, & Luong Ngoc Dung. (2024). Study on the positioning efficiency of GNSS RTK for road profile surveys - case study in Vietnam. Journal of Science and Technology in Civil Engineering (JSTCE) - HUCE, 18(2), 86–98. https://doi.org/10.31814/stce.huce2024-18(2)-07

Charles D, G., & Paul R, W. (2006). Adjustment Computations (Fourth Edi). John Wiley & Sons, INC.

China Satellite Navigation Office. (2019a). BeiDou Navigation Satellite System Signal In Space Interface Control Document Precise Point Positioning Service Signal PPP-B2b.

China Satellite Navigation Office. (2019b). Development of the BeiDou Navigation Satellite System (Version 4.0) (Issue December). http://en.beidou.gov.cn/SYSTEMS/Officialdocument/

Comnav Tech. (2021). N3_IMU_GNSS_Receiver. https://www.comnavtech.com/uploads/soft/20241230/ceb05da10106541418e6d11c1d31c8c8.pdf

ComNav Technology Ltd. (2020). K803 GNSS Module 30. https://www.comnavtech-ag.com/wp-content/uploads/2023/07/SinoGNSS-K803-GNSS-OEM-Module.pdf

El-Mowafy, A. (2012). Precise Real-Time Positioning Using Network RTK. In Global Navigation Satellite Systems: Signal, Theory and Applications (Issue February 2012, pp. 161–187). InTech. https://doi.org/10.5772/29502

Elsheikh, M., Iqbal, U., Noureldin, A., & Korenberg, M. (2023). The Implementation of Precise Point Positioning (PPP): A Comprehensive Review. Sensors Review, 23, 1–25. https://doi.org/https://doi.org/10.3390/s23218874

European GNSS Supervisory Authority. (2023). Galileo High Accuracy Service : Service Definition Document (HAS SDD) (Issue 1). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-HAS-SDD_v1.0.pdf

He, Q., Chen, L., Liu, L., Zhao, D., Gong, X., Lou, Y., & Guan, Q. (2023). Long-Term Performance Evaluation of BeiDou PPP-B2b Products and Its Application in Time Service. Remote Sensing, 15(5), 1–16. https://doi.org/10.3390/rs15051358

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.

Hou, Z., & Zhou, F. (2023). Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo. Remote Sensing, 15(3). https://doi.org/10.3390/rs15030807

Li, X., & Pan, L. (2021). Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers. In Remote Sensing (Vol. 13, Issue 19). https://doi.org/10.3390/rs13193905

Liu, T., Yuan, Y., Zhang, B., Wang, N., Tan, B., & Chen, Y. (2017). Evaluation of the Integrity Risk for Precise Point Positioning. Journal of Geodesy, 91(3), 253–268. https://doi.org/10.1007/s00190-016-0960-3

Liu, Y., Yang, C., & Zhang, M. (2022). Comprehensive Analyses of PPP‐B2b Performance in China and Surrounding Areas. Remote Sensing, 14(3), 1–28. https://doi.org/10.3390/rs14030643

Lu, X., Chen, L., Shen, N., Wang, L., Jiao, Z., & Chen, R. (2021). Decoding PPP Corrections from BDS B2b Signals Using a Software- defined Receiver:an Initial Performance Evaluation. IEEE Sensors Journal, 21(6), 7871–7883.

Ministry of Natural Resources and Environment. (2015). Circular No. 68/2015/TT-BTNMT of the Ministry of Natural Resources and Environment: Technical regulations for direct terrain measurement to serve the establishment of topographic maps and geographic database at 1:500 scale, 1:1000, 1:2000, 1:5000.

Naciri, N., Yi, D., Bisnath, S., de Blas, F. J., & Capua, R. (2023). Assessment of Galileo High Accuracy Service (HAS) test signals and preliminary positioning performance. GPS Solutions, 27(2). https://doi.org/10.1007/s10291-023-01410-y

Pintor, P., Lopez-Martinez, M., Gonzalez, E., Safar, J., & Boyle, R. (2023). Testing Galileo High-Accuracy Service (HAS) in Marine Operations. Journal of Marine Science and Engineering, 11(2375), 1–13. https://doi.org/https://doi.org/10.3390/jmse11122375

Tang, J., Lyu, D., Zeng, F., Ge, Y., & Zhang, R. (2022). Comprehensive Analysis of PPP-B2b Service and Its Impact on BDS-3/GPS Real-Time PPP Time Transfer. Remote Sensing, 14(21), 1–22. https://doi.org/10.3390/rs14215366

Tran, D. T., Nguyen, D. H., Vu, N. Q., & Nguyen, Q. L. (2023). Crustal displacement in Vietnam using CORS data during 2018-2021. Earth Sciences Research Journal, 27(1), 27–36. https://doi.org/10.15446/esrj.v27n1.102630

Tran Dinh Trong, & Luong Ngoc Dung. (2024). Study on the positioning efficiency of GNSS RTK for road profile surveys - case study in Vietnam. Journal of Science and Technology in Civil Engineering (JSTCE) - HUCE, 18(2), 86–98. https://doi.org/10.31814/stce.huce2024-18(2)-07

Unicore Communications. (2022). UM982 GPS/BDS/GLONASS/Galileo/QZSS All-constellation Multi-frequency High Precision Positioning & Heading Module. https://gnss.store/unicore-gnss-modules/236-UM982.html?srsltid=AfmBOopCNnwZNntIDNuuOCftbB2J5x3bRohB9eibIZyeYh2JWfJ3TUg8

How to Cite

APA

LUONG, N. D., VU, N. Q., NGUYEN, V. H. & TRAN, D. T. (2025). Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers. Earth Sciences Research Journal, 29(2), 219–230. https://revistas.unal.edu.co/index.php/esrj/article/view/118407

ACM

[1]
LUONG, N.D., VU, N.Q., NGUYEN, V.H. and TRAN, D.T. 2025. Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers. Earth Sciences Research Journal. 29, 2 (Jul. 2025), 219–230.

ACS

(1)
LUONG, N. D.; VU, N. Q.; NGUYEN, V. H.; TRAN, D. T. Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers. Earth sci. res. j. 2025, 29, 219-230.

ABNT

LUONG, N. D.; VU, N. Q.; NGUYEN, V. H.; TRAN, D. T. Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers. Earth Sciences Research Journal, [S. l.], v. 29, n. 2, p. 219–230, 2025. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/118407. Acesso em: 29 dec. 2025.

Chicago

LUONG, Ngoc Dung, Ngoc Quang VU, Viet Ha NGUYEN, and Dinh Trong TRAN. 2025. “Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers”. Earth Sciences Research Journal 29 (2):219-30. https://revistas.unal.edu.co/index.php/esrj/article/view/118407.

Harvard

LUONG, N. D., VU, N. Q., NGUYEN, V. H. and TRAN, D. T. (2025) “Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers”, Earth Sciences Research Journal, 29(2), pp. 219–230. Available at: https://revistas.unal.edu.co/index.php/esrj/article/view/118407 (Accessed: 29 December 2025).

IEEE

[1]
N. D. LUONG, N. Q. VU, V. H. NGUYEN, and D. T. TRAN, “Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers”, Earth sci. res. j., vol. 29, no. 2, pp. 219–230, Jul. 2025.

MLA

LUONG, N. D., N. Q. VU, V. H. NGUYEN, and D. T. TRAN. “Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers”. Earth Sciences Research Journal, vol. 29, no. 2, July 2025, pp. 219-30, https://revistas.unal.edu.co/index.php/esrj/article/view/118407.

Turabian

LUONG, Ngoc Dung, Ngoc Quang VU, Viet Ha NGUYEN, and Dinh Trong TRAN. “Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers”. Earth Sciences Research Journal 29, no. 2 (July 16, 2025): 219–230. Accessed December 29, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/118407.

Vancouver

1.
LUONG ND, VU NQ, NGUYEN VH, TRAN DT. Accuracy Assessment of the PPP Solution Using Standard GNSS Receivers. Earth sci. res. j. [Internet]. 2025 Jul. 16 [cited 2025 Dec. 29];29(2):219-30. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/118407

Download Citation

Article abstract page views

134

Downloads

Download data is not yet available.