Published

2025-10-29

Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data

Características de las variaciones estacionales de la velocidad sísmica del subsuelo superficial y sus factores influyentes en el área de Tianjin, norte de China, utilizando datos de ruido sísmico ambiental

DOI:

https://doi.org/10.15446/esrj.v29n3.119268

Keywords:

Seismic noise, Velocity variation, HVSR method, Seismic interferometry, Seasonally frozen soil (en)
Ruido sísmico, Variación de la velocidad, Método HVSR, Interferometría sísmica, Suelo congelado estacionalmente (es)

Downloads

Authors

  • Yipei Tan Tianjin Earthquake Agency, Tianjin, China, 300210, China
  • Ting Ma Tianjin Earthquake Agency, Tianjin, China, 300210, China
  • Li Deng Tianjin Earthquake Agency, Tianjin, China, 300210, China
  • Ke Xu Tianjin Earthquake Agency, Tianjin, China, 300210, China

It is feasible to continuously monitor the temporal changes of shallow subsurface media by utilizing ambient seismic noise. Here, the authors analyzed three-year continuous records of 117 earthquake early warning stations in the Tianjin area in the North China Plain to explore the seasonal variation of shallow subsurface seismic velocity. They examined the daily horizontal-to-vertical spectral ratio (HVSR) curves and found that 25 stations exhibit clear seasonal variations in peak frequency and peak magnitude within the frequency range of 5-20 Hz. Subsequently, autocorrelation is applied to the seismic noise of these 25 stations in the 5-20 Hz frequency range to calculate the relative velocity changes. Ten stations show the same variation pattern in the peak frequency of HVSR curves and relative velocity changes based on autocorrelation. This pattern exhibits characteristics where the peak frequency and seismic velocity increase rapidly in November, decrease quickly in February of the following year, and change relatively little in other seasons. By comparing with meteorological data, the authors infer that the freezing of the soil layer when the temperature drops below 0°C leads to an increase in shear wave velocity and peak frequency in winter. The results suggest that studies on crustal structure detection need to consider temperature effects.

Es posible monitorear continuamente los cambios temporales de los medios del subsuelo superficial mediante el uso del ruido sísmico ambiental. En este estudio, los autores analizaron registros continuos de tres años de 117 estaciones de alerta temprana de terremotos en el área de Tianjin, en la llanura del norte de China, para explorar la variación estacional de la velocidad sísmica del subsuelo superficial. Examinaron las curvas diarias de la relación espectral horizontal-vertical (HVSR) y descubrieron que 25 estaciones presentan claras variaciones estacionales en la frecuencia y magnitud pico dentro del rango de frecuencia de 5 a 20 Hz. Posteriormente, se aplicó la autocorrelación al ruido sísmico de estas 25 estaciones en el rango de frecuencia de 5 a 20 Hz para calcular los cambios de velocidad relativa. Diez estaciones muestran el mismo patrón de variación en la frecuencia pico de las curvas HVSR y los cambios de velocidad relativa basados ​​en la autocorrelación. Este patrón presenta características donde la frecuencia pico y la velocidad sísmica aumentan rápidamente en noviembre, disminuyen rápidamente en febrero del año siguiente y varían relativamente poco en otras estaciones. Al comparar datos meteorológicos, los autores infieren que la congelación de la capa de suelo cuando la temperatura desciende por debajo de 0 °C provoca un aumento de la velocidad y la frecuencia pico de las ondas de corte en invierno. Los resultados sugieren que los estudios sobre la detección de la estructura de la corteza deben considerar los efectos de la temperatura.

References

Ashruf, T. N., & Morelli, A. (2022). The Moho reflectivity of the subduction beneath the Southwestern Alps from ambient seismic noise autocorrelations. Geophysical Journal International, 230(1), 298-316. https://doi.org/10.1093/gji/ggac079

Benkaci, N., Oubaiche, E. H., Chatelain, J. L., Bensalem, R., Benouar, D., & Abbes, K. (2018). Non-stability and non-reproducibility of ambient vibration HVSR peaks in Algiers (Algeria). Journal of Earthquake Engineering, 25(5), 853-871. https://doi.org/10.1080/13632469.2018.1537903

Bonilla, L. F., Guéguen, P., & Ben-Zion, Y. (2019). Monitoring coseismic temporal changes of shallow material during strong ground motion with interferometry and autocorrelation. Bulletin of the Seismological Society of America, 109(1), 187-198. https://doi.org/10.1785/0120180092

Cao, J., Yan, C., & Zhang, W. (2018). Report of fracture detection and seismic risk assessment of Jiyunhe fault (in Chinese). Tianjin Earthquake Agency, 306-315.

Chen, S., Lei, J., & Li, Y. (2023). Microtremor Recording Surveys to Study the Effects of Seasonally Frozen Soil on Site Response. Sensors, 23(12), 5573. https://doi.org/10.3390/s23125573

Cheng, F., Lindsey, N. J., Sobolevskaia, V., Dou, S., Freifeld, B., Wood, T., James, S. R., Wagner, A. M., & Ajo-Franklin, J. B. (2022). Watching the Cryosphere Thaw: Seismic Monitoring of Permafrost Degradation Using Distributed Acoustic Sensing During a Controlled Heating Experiment. Geophysical Research Letters, 49(10), e2021GL097195. https://doi.org/10.1029/2021GL097195

Delouche, E., & Stehly, L. (2023). Seasonal Seismic Velocity Variations Measured Using Seismic Noise Autocorrelations to Monitor the Dynamic of Aquifers in Greece. Journal of Geophysical Research: Solid Earth, 128(12), e2023JB026759. https://doi.org/10.1029/2023JB026759

Dong, Y., Ni, S., Yuen, D. A., & Li, Z. (2018). Crustal rheology from focal depths in the North China Basin. Earth and Planetary Science Letters, 497, 123-138. https://doi.org/10.1016/j.epsl.2018.06.018

Feng, F., Huang, H., Hsu, J., & Wu, M. (2021). Controls on Seasonal Variations of Crustal Seismic Velocity in Taiwan Using Single-Station Cross-Component Analysis of Ambient Noise Interferometry. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022650. https://doi.org/10.1029/2021JB022650

Gradon, C., Brenguier, F., Stammeijer, J., Mordret, A., Hindriks, K., Campman, X., Lynch, R., Boué, P., & Chmiel, M. (2021). Seismic velocity response to atmospheric pressure using time-lapse passive seismic interferometry. Bulletin of the Seismological Society of America, 111(6), 3451–3458. https://doi.org/10.1785/0120210069

Gassenmeier, M., Delatre, M., & Korn, M. (2015). Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal International, 200(1), 524-533. https://doi.org/10.1093/gji/ggu413

James, S. R., Knox, H. A., Abbott, R. E., & Screaton, E. J. (2017). Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophysical Research Letters, 44(9), 4018-4026. https://doi.org/10.1002/2016GL072468

Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228-241. https://doi.org/10.1785/bssa0880010228

Köhler A., & Weidle, C. (2019). Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard. Earth Surface Dynamics, 7, 1-16. https://doi.org/10.5194/esurf-7-1-2019

Kramer, R., Lu, Y., & Bokelmann, G. (2023). Interaction of Air Pressure and Groundwater as Main Cause of Sub-Daily Relative Seismic Velocity Changes. Geophysical Research Letters, 50(7), e2022GL101298. https://doi.org/10.1029/2022GL101298

Kula, D., Olszewska, D., Dobiński, W., & Glazer, M. (2018). Horizontal-to-vertical spectral ratio variability in the presence of permafrost. Geophysical Journal International, 214(1), 219-231. https://doi.org/10.1093/gji/ggy118

Langston, C. A. (2011). Wavefield continuation and decomposition for passive seismic imaging under deep unconsolidated sediments. Bulletin of the Seismological Society of America, 101(5), 2176-2190. https://doi.org/10.1785/0120100299

La Rocca, M., Chiappetta, G. D., Gervasi, A., & Festa, R. L. (2020). Non-stability of the noise HVSR at sites near or on topographic heights. Geophysical Journal International, 222(3), 2162-2171. https://doi.org/10.1093/gji/ggaa297

La Rocca, M., & Chiappetta, G. D. (2022). Day–night cycle of seismic noise HVSR and comparison with body waves and T waves. Geophysical Journal International, 231(3), 1535-1544. https://doi.org/10.1093/gji/ggac265

Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715-726. https://doi.org/10.1785/0220130073

Li, G., & Ben-Zion, Y. (2023). Daily and Seasonal Variations of Shallow Seismic Velocities in Southern California From Joint Analysis of H/V Ratios and Autocorrelations of Seismic Waveforms. Journal of Geophysical Research: Solid Earth, 128(2), e2022JB025682. https://doi.org/10.1029/2022JB025682

Li, J., Song, X., Yang, Y., Li, M., Li, J., & Li, Y. (2021). Strong Seasonal Variations of Seismic Velocity in Eastern Margin of Tibetan Plateau and Sichuan Basin from Ambient Noise Interferometry. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022600. https://doi.org/10.1029/2021JB022600

Lindner, F., Wassermann, J., & Igel, H. (2021). Seasonal Freeze-Thaw Cycles and Permafrost Degradation on Mt. Zugspitze (German/Austrian Alps) Revealed by Single-Station Seismic Monitoring. Geophysical Research Letters, 48(18), e2021GL094659. https://doi.org/10.1029/2021GL094659

Liu, H., Li, J., Hu, R., Meng, H., & Lyu, H. (2024). Quantitatively Monitoring of Seasonal Frozen Ground Freeze–Thaw Cycle Using Ambient Seismic Noise Data. Seismological Research Letters, 96(1), 282-293. https://doi.org/10.1785/0220240201

Liu, Z., Liang, C., Huang, H., Wang, C., & Cao, F. (2022). Seismic Velocity Variations at Different Depths Reveal the Dynamic Evolution Associated With the 2018 Kilauea Eruption. Geophysical Research Letters, 49(3), e2021GL093691. https://doi.org/10.1029/2021GL093691

Lontsi, A. M., Hobiger, M., Panzera, F., Sánchez-Sesma, F. J., & Fäh, D. (2022). Seismic characterization of Swiss strong-motion borehole-station sites by inversion of full microtremor horizontal-to-vertical spectral ratios [H/V(z,f)]. Bulletin of the Seismological Society of America, 113, 417-436. https://doi.org/10.1785/0120210320

Luan, Y., Yang, H., Wang, B., Yang, W., Wang, W., Yang, J., & Li, X. (2022). Time-lapse monitoring of daily velocity changes in Binchuan, southwestern China, using large-volume air-gun source array data. Seismological Research Letters, 93, 914-930. DOI: 10.1785/0220210160.

Mao, S., Lecointre, A., D., R., & Campillo, M. (2022). Space-time monitoring of groundwater fluctuations with passive seismic interferometry. Nature Communications, 13(1), 1-9. https://doi.org/10.1038/s41467-022-32194-3

Miao, Y., Shi, Y., & Wang, S. (2018). Temporal change of near-surface shear wave velocity associated with rainfall in Northeast Honshu, Japan. Earth, Planets and Space, 70(1), 1-11. https://doi.org/10.1186/s40623-018-0969-3

Miao, Y., Shi, Y., Zhuang, H. Y., Wang, S. Y., Liu, H. B., & Yu, X. B. (2019). Influence of Seasonal Frozen Soil on Near-Surface Shear Wave Velocity in Eastern Hokkaido, Japan. Geophysical Research Letters, 46(16), 9497-9508. https://doi.org/10.1029/2019GL082282

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, 30, 25-33.

Nakamura, Y. (2019). What is the Nakamura method? Seismological Research Letters, 90(4), 1437–1443. https://doi.org/10.1785/0220180376

S. Oakley, D. O., Forsythe, B., Gu, X., Nyblade, A. A., & Brantley, S. L. (2021). Seismic Ambient Noise Analyses Reveal Changing Temperature and Water Signals to 10s of Meters Depth in the Critical Zone. Journal of Geophysical Research: Earth Surface, 126(2), e2020JF005823. https://doi.org/10.1029/2020JF005823

Okubo, K., Delbridge, B. G., & Denolle, M. A. (2024). Monitoring Velocity Change Over 20 Years at Parkfield. Journal of Geophysical Research: Solid Earth, 129(4), e2023JB028084. https://doi.org/10.1029/2023JB028084

Peng, F., Wang, W., & Kou, H. D. (2020). Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: site responses, shallow sedimentary structure, and fault activity revealed. Chinese Journal of Geophysics (in Chinese), 63(10), 3775-3790. DOI: 10.6038/cjg2020O0025

Poli, P., Marguin, V., Wang, Q., & Johnson, P. (2020). Seasonal and Coseismic Velocity Variation in the Region of L'Aquila From Single Station Measurements and Implications for Crustal Rheology. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019316. https://doi.org/10.1029/2019JB019316

Qin, L., Steidl, J. H., Qiu, H., Nakata, N., & Ben-Zion, Y. (2022). Monitoring Seasonal Shear Wave Velocity Changes in the Top 6 m at Garner Valley in Southern California With Borehole Data. Geophysical Research Letters, 49(23), e2022GL101189. https://doi.org/10.1029/2022GL101189

Qin, T., Lu, L., Ding, Z., Feng, X., & Zhang, Y. (2022). High-Resolution 3D Shallow S Wave Velocity Structure of Tongzhou, Subcenter of Beijing, Inferred From Multimode Rayleigh Waves by Beamforming Seismic Noise at a Dense Array. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023689. https://doi.org/10.1029/2021JB023689

Rigo, A., Sokos, E., Lefils, V., & Briole, P. (2021). Seasonal variations in amplitudes and resonance frequencies of the HVSR amplification peaks linked to groundwater. Geophysical Journal International, 226(1), 1-13. https://doi.org/10.1093/gji/ggab086

Roumelioti, Z., Hollender, F., & Gueguen, P. (2020). Rainfall-induced variation of seismic waves velocity in soil and implications for soil response: What the ARGONET (Cephalonia, Greece) vertical array data reveal. Bulletin of the Seismological Society of America, 110(2), 441-451. https://doi.org/10.1785/0120190183

Seivane, H., García-Jerez, A., Navarro, M., Molina, L., & Navarro-Martínez, F. (2022). On the use of the microtremor HVSR for tracking velocity changes: a case study in Campo de Dalias basin (SE Spain). Geophysical Journal International, 230, 542-564. https://doi.org/10.1093/gji/ggac064

Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). https://doi.org/10.1029/2006GL027797

Steinmann, R., Hadziioannou, C., & Larose, E. (2020). Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations. Geophysical Journal International, 224(1), 626-636. https://doi.org/10.1093/gji/ggaa406

Tchawe, F. N., Froment, B., Campillo, M., & Margerin, L. (2020). On the use of the coda of seismic noise autocorrelations to compute H/V spectral ratios. Geophysical Journal International, 220(3), 1956-1964. https://doi.org/10.1093/gji/ggz553

Tianjin Institute of Geological Survey. (2018). Regional geology of Tianjin Municipality. Beijing: Geological Publishing House, 279-324.

Vassallo, M., Cultrera, G., Giulio, G. D., Cara, F., & Milana, G. (2022). Peak Frequency Changes From HV Spectral Ratios in Central Italy: Effects of Strong Motions and Seasonality Over 12 Years of Observations. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023848. https://doi.org/10.1029/2021JB023848

Wang, Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., & Aoki, Y. (2017). Seasonal Crustal Seismic Velocity Changes Throughout Japan. Journal of Geophysical Research: Solid Earth, 122(10), 7987-8002. https://doi.org/10.1002/2017JB014307

Weaver, R. L., Hadziioannou, C., Larose, E., & Campillo, M. (2011). On the precision of noise correlation interferometry. Geophysical Journal International, 185(3), 1384-1392. https://doi.org/10.1111/j.1365-246X.2011.05015.x

Yassminh, R., Gallegos, A., Sandvol, E., & Ni, J. (2019). Investigation of the regional site response in the Central and Eastern United States. Bulletin of the Seismological Society of America, 109, 1005–1024. https://doi.org/10.1785/0120180230

Zhang, S., Luo, B., Ben-Zion, Y., Lumley, D. E., & Zhu, H. (2023). Monitoring Terrestrial Water Storage, Drought and Seasonal Changes in Central Oklahoma With Ambient Seismic Noise. Geophysical Research Letters, 50(17), e2023GL103419. https://doi.org/10.1029/2023GL103419

Zimmerman, R. W., King, M. S. (1986). The effect of the extent of freezing on seismic velocities in unconsolidated permafrost. Geophysics, 51(6), 1285–1290. https://doi.org/10.1190/1.1442181

How to Cite

APA

Tan, Y., Ma, T., Deng, L. & Xu, K. (2025). Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data. Earth Sciences Research Journal, 29(3), 333–345. https://doi.org/10.15446/esrj.v29n3.119268

ACM

[1]
Tan, Y., Ma, T., Deng, L. and Xu, K. 2025. Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data. Earth Sciences Research Journal. 29, 3 (Oct. 2025), 333–345. DOI:https://doi.org/10.15446/esrj.v29n3.119268.

ACS

(1)
Tan, Y.; Ma, T.; Deng, L.; Xu, K. Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data. Earth sci. res. j. 2025, 29, 333-345.

ABNT

TAN, Y.; MA, T.; DENG, L.; XU, K. Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data. Earth Sciences Research Journal, [S. l.], v. 29, n. 3, p. 333–345, 2025. DOI: 10.15446/esrj.v29n3.119268. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/119268. Acesso em: 27 dec. 2025.

Chicago

Tan, Yipei, Ting Ma, Li Deng, and Ke Xu. 2025. “Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data”. Earth Sciences Research Journal 29 (3):333-45. https://doi.org/10.15446/esrj.v29n3.119268.

Harvard

Tan, Y., Ma, T., Deng, L. and Xu, K. (2025) “Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data”, Earth Sciences Research Journal, 29(3), pp. 333–345. doi: 10.15446/esrj.v29n3.119268.

IEEE

[1]
Y. Tan, T. Ma, L. Deng, and K. Xu, “Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data”, Earth sci. res. j., vol. 29, no. 3, pp. 333–345, Oct. 2025.

MLA

Tan, Y., T. Ma, L. Deng, and K. Xu. “Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data”. Earth Sciences Research Journal, vol. 29, no. 3, Oct. 2025, pp. 333-45, doi:10.15446/esrj.v29n3.119268.

Turabian

Tan, Yipei, Ting Ma, Li Deng, and Ke Xu. “Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data”. Earth Sciences Research Journal 29, no. 3 (October 29, 2025): 333–345. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/119268.

Vancouver

1.
Tan Y, Ma T, Deng L, Xu K. Seasonal variations characteristics of shallow subsurface seismic velocity and its influencing factors in Tianjin area, North China using ambient seismic noise data. Earth sci. res. j. [Internet]. 2025 Oct. 29 [cited 2025 Dec. 27];29(3):333-45. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/119268

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

51

Downloads

Download data is not yet available.