Published
Regional Displacement in Malatya and Adjacent Regions (Eastern Anatolia) Induced by the February 6, 2023 Kahramanmaraş Earthquakes (Mw 7.7, Mw 7.6)
Desplazamiento regional en Malatya y alrededores (este de Anatolia) provocado por los terremotos de Kahramanmaraş del 6 de febrero de 2023 (Mw 7,7, Mw 7,6)
DOI:
https://doi.org/10.15446/esrj.v29n3.119786Keywords:
Malatya, Eastern Anatolia Fault zone, earthquake, GNSS, seismicity, deformation (en)Malatya, zona de fallas del Este de Anatolia, terremoto, GNSS, seismicidad, deformación (es)
Downloads
On February 6, 2023, two major earthquakes (Mw 7.7 and Mw 7.6) struck Kahramanmaraş, significantly affecting Eastern Anatolia. The tectonic structure of Malatya and its surroundings, including the East Anatolian Fault Zone (EAFZ) and the Malatya Fault, plays a crucial role in the region's seismicity. Following the Kahramanmaraş earthquakes, two moderate earthquakes (Mw 5.3 and Mw 5.0) occurred in Malatya in August 2023, causing panic among the locals. GNSS data from Continuously Operating Reference Stations-Turkey (CORS-TR) were analyzed in this study to investigate the tectonic activity in and around Malatya and assess how the stress accumulated after the February 2023 earthquakes may have influenced this region. Firstly, the displacements in Eastern Anatolia between January 1 and March 1, 2023, were calculated to evaluate the immediate effects of the February 6 earthquakes. Then, GNSS data from March 2 to December 31, 2023, were processed to examine the ongoing tectonic behavior. Additionally, seismic activity during the same period was analyzed, revealing the occurrence of several moderate earthquakes potentially linked to the February 6, 2023 Kahramanmaraş earthquakes. The GNSS results indicate that most stations show continued tectonic motion, suggesting that stress changes induced by the Kahramanmaraş earthquakes still influence the region. Furthermore, the lack of stabilization at the stations highlights the persistence of postseismic deformation. The spatial correlation between observed seismicity and displacement vectors emphasizes that the Malatya segment of the EAFZ remains a significant zone of strain accumulation and release. Stations such as MLY1 (Malatya), APK1 (Arapgir, Malatya), and ADY1 (Adıyaman) continued to move in the same direction observed during the mainshock, pointing to ongoing afterslip. Moreover, stations farther from the rupture zone (e.g., SUF1 (Sanlıurfa), HAT2 (Hatay), GURU (Gürün, Sivas)) exhibited consistent displacement patterns, indicating that postseismic deformation extended across a broad area, including the Arabian Plate and the back-arc region north of the fault. These findings underline the long-term impact of the February 6, 2023, earthquakes on regional seismic activity and demonstrate the importance of integrating geodetic and seismic data for ongoing hazard assessment in Eastern Anatolia.
El 6 de febrero de 2023, dos terremotos (Mw 7.7 and Mw 7.6) ocurrieron en Kahramanmaraş, y causaron afectaciones en el este de Anatolia (Turquía). La estructura tectónica de Malatya y sus alrededores, incluidas la Zona de Fallas de Anatolia y la falla de Malatya, juega un papel crucial en la seismicidad de la región. Despues de los terremotos en Kahramanmaraş, dos terremotos moderados (Mw 5.3 and Mw 5.0) en Malatya en agosto de 2023, y causaron pánico entre los habitantes. En este estudio se analiza la información GNSS de las estaciones de referencia de operacion continua de Turquía (CORS-TR) para investigar la actividad tectónica en y alrededor de Malatya y evaluar cómo el estrés acumulado después de los terremotos de febrero de 2023 pueden haber influenciado en la región. Inicialmente se calcularon los desplazamientos en el este de Anatolia entre el primero de enero y el primero de marzo de 2023 para evaluar los efectos inmediatos de los terremotos del 6 de febrero. Luego se procesó la información GNSS del dos de marzo hasta el 31 de diciembre de 2023 para examinar el comportamiento tectónico del período. Adicionalmente, se analizó la actividad sísmica en el mismo período, lo que revela la ocurrencia de varios terremotos moderados potencialmente relacionados con los terremos de Kahramanmaraş de febrero de 2023. Los resultados GNSS indican que la mayoría de estaciones muestran continuos movimientos tectónicos, lo que demuestra que los cambios de estrés generados por los terremotos de Kahramanmaraş aún tienen influencia en la región. Además, la falta de estabilización de las estaciones resalta la persistencia de la deformación postsísmica. La correlación espacial entre la sismicidad observada y los vectores de desplazamiento enfatiza que el segmento Malatya de la EAFZ sigue siendo una zona significativa de acumulación y liberación de deformaciones. Estaciones como MLY1 (Malatya), APK1 (Arapgir, Malatya) y ADY1 (Adıyaman) continuaron moviéndose en la misma dirección observada durante el sismo principal, lo que apunta a un deslizamiento posterior en curso. Además, las estaciones más alejadas de la zona de ruptura (por ejemplo, SUF1 (Sanlıurfa), HAT2 (Hatay), GURU (Gürün, Sivas)) exhibieron patrones de desplazamiento consistentes, lo que indica que la deformación postsísmica se extendió a través de un área amplia, incluyendo la Placa Arábiga y la región de retroarco al norte de la falla. Estos hallazgos subrayan el impacto a largo plazo de los terremotos del 6 de febrero de 2023 en la actividad sísmica regional y demuestran la importancia de integrar datos geodésicos y sísmicos para la evaluación continua de riesgos en Anatolia Oriental.
References
Acarel, D., Cambaz, M. D., Turhan, F., Mutlu, A. K., & Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosciences, 11(1), 1098-1111. https://doi.org/10.1515/geo-2019-0085
Ayso, E., Köz, İ., Doğanalp, S., Aslan, M., Tuşat, E., Kahveci, M., & Taşpınar, C. (2025). Assessing the impact of the 2023 Kahramanmaraş and Hatay earthquakes on cadastre and property data using GPS and GIS. Bulletin of Earthquake Engineering, 23(3), 945-963. https://doi.org/10.1007/s10518-024-01956-3.
AFAD. (2023). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Mw 7.7 Elbistan (Kahramanmaraş) Mw 7.6 Depremlerine İlişkin Ön Değerlendirme Raporu. The Disaster and Emergency Management Presidency. https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras%20%20Depremleri_%20On%20Degerlendirme%20Raporu.pdf (last accessed April 2025).
Aktuğ, B., Kaypak, B., & Çelik, R. N. (2010). Source parameters for the Mw = 6.6, 03 February 2002, Çay Earthquake (Turkey) and aftershocks from GPS, Southwestern Turkey. Journal of Seismology, 14, 445–456. https://doi.org/10.1007/s10950-009-9174-y.
Aktuğ, B., Dikmen, U., Dogru, A. & Ozener, H. (2013). Seismicity and strain accumulation around Karliova Triple Junction (Turkey). Journal of Geodynamics, 67, 21–29. https://doi.org/10.1016/j.jog.2012.04.008
Aktuğ, B., Ozener, H., Dogru, A., Sabuncu, A., Turgut, B., Halicioglu, K., Yilmaz, O., & Havazli, E. (2016). Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94, 1–12. https://doi.org/10.1016/j.jog.2016.01.001
Barka, A. (1999). The 17 August 1999 Izmit earthquake. Science, 285(5435),1858-1859. Doi: 10.1126/science.285.5435.1858
Bayrak, E., Yılmaz, Ş., Softa, M., Türker, T., & Bayrak, Y. (2015). Earthquake hazard analysis for East Anatolian fault zone, Turkey. Natural Hazards, 76(2), 1063-1077. https://doi.org/10.1007/s11069-014-1541-5
Bletery, Q., Cavalié, O., Nocquet, J. M., & Ragon, T. (2020). Distribution of interseismic coupling along the North and East Anatolian Faults inferred from InSAR and GPS data. Geophysical Research Letters, 47(16), e2020GL087775. https://doi.org/10.1029/2020GL087775
Büyüksaraç, A., Işık, E., Bektaş, Ö., & Avcil, F. (2024). Achieving Intensity Distributions of 6 February 2023 Kahramanmaraş (Türkiye) Earthquakes from Peak Ground Acceleration Records. Sustainability, 16(2), 599. https://doi.org/10.3390/su16020599
Çırmık, A. (2018a). Examining the crustal structures of eastern Anatolia, using thermal gradient, heat flow, radiogenic heat production and seismic velocities. Bollettino di Geofisica Teorica ed Applicata, 59(2), 117-134. DOI: 10.4430/bgta0230
Çırmık, A. (2018b). 24 Mayıs 2014 Gökçeada Açıkları–Ege Denizi Depreminin (Ml= 6.5) Deprem Anı ve Sonrası Meydana Getirdiği Yer Değiştirmeler ve Deformasyonların İrdelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20(58), 230-244. (in Turkish). DOI: 10.21205/deufmd.2018205819
Çırmık, A., & Pamukçu, O. (2017). Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies. Journal of Asian Earth Sciences, 148, 294-304. https://doi.org/10.1016/j.jseaes.2017.09.001
Çırmık, A., Doğru, F., Gönenç, T., & Pamukçu, O. (2017). The stress/strain analysis of kinematic structure at Gülbahçe Fault and Uzunkuyu Intrusive (İzmir, Turkey). Pure and Applied Geophysics, 174(3), 1425-1440. https://doi.org/10.1007/s00024-017-1474-5
DEU (2023). 06 Şubat 2023, 04:17, Mw=7.7, h=9 km PAZARCIK (Kahramanmaraş) Depremi 06 Şubat 2023, 13:24, Mw=7.6, H=7 km Elbistan (Kahramanmaraş) Depremi 20 Şubat 2023, 20:04, Mw=6.4, H=22 km Defne (Hatay) Depremi Deprem Raporu. Dokuz Eylul Universitesi. https://haber.deu.edu.tr/wp-content/uploads/2023/03/DOKUZ-EYLU%CC%88L U%CC%88NI%CC%87VERSI%CC%87TESI%CC%87-DEPREM-RAPORU-1.pdf last accessed April 2025).
Doğanalp, S., Coşkuner, B., & Makineci, H. B. (2024). Analysis of short-term Sentinel-1 data using the DInSAR method for monitoring displacement following the earthquakes of 6 and 20 February in Hatay city. Bulletin of Geophysics and Oceanography, 65(4), 491-512. DOI: 10.4430/bgo00478
Ekici, T., Alpaslan, M., Parlak, O., & Temel, A. (2007). Geochemistry of the Pliocene basalts erupted along the Malatya-Ovacik fault zone (MOFZ), eastern Anatolia, Turkey: Implications for source characteristics and partial melting processes. Geochemistry, 67(3), 201-212. https://doi.org/10.1016/j.chemer.2006.01.007
Gülerce, Z., Shah, S. T., Menekşe, A., Özacar, A. A., Kaymakci, N., & Çetin, K. O. (2017). Probabilistic seismic‐hazard assessment for East Anatolian fault zone using planar fault source models. Bulletin of the Seismological Society of America, 107(5), 2353-2366. https://doi.org/10.1785/0120170009
He, L., Feng, G., Xu, W., Wang, Y., Xiong, Z., Gao, H., & Liu, X. (2023). Coseismic kinematics of the 2023 Kahramanmaras, Turkey earthquake sequence from InSAR and optical data. Geophysical Research Letters, 50(17), e2023GL104693. https://doi.org/10.1029/2023GL104693
Herring, T. (2003). MATLAB Tools for viewing GPS velocities and time series. GPS solutions, 7(3), 194-199. https://doi.org/10.1007/s10291-003-0068-0
Herring, T. A., King, R. W., Floyd, M. A. & McClusky, S. C. (2015a). Global Kalman Filter VLBI and GPS Analysis Program. Massachusetts Institute of Technology, Cambridge, MA, USA.
Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015b). Introduction to GAMIT/ GLOBK. Massachusetts Institute of Technology, Cambridge, MA, USA.
Jaume, S. C., & Sykes, L. R. (1996). Evolution of moderate seismicity in the San Francisco Bay region, 1850 to 1993: Seismicity changes related to the occurrence of large and great earthquakes. Journal of Geophysical Research: Solid Earth, 101(B1), 765-789. https://doi.org/10.1029/95JB02393
Kahveci, M., Çırmık, A., Doğru, F., Pamukçu, O., & Gönenç, T. (2019). Subdividing the tectonic elements of Aegean and Eastern Mediterranean with gravity and GPS data. Acta Geophysica, 67(2), 491-500. https://doi.org/10.1007/s11600-019-00270-w
Kaymakci, N., Inceoz, M. & Ertepinar, P. (2006). 3D architecture and neogene evolution of the malatya basin: inferences for the kinematics of the malatya and ovacik fault zones. Turkish Journal of Earth Science, 15(2), 123–154.
Kobayashi, T., Munekane, H., Kuwahara, M., & Furui, H. (2024). Insights on the 2023 Kahramanmaraş Earthquake, Turkey, from InSAR: fault locations, rupture styles and induced deformation. Geophysical Journal International, 236(2), 1068-1088. https://doi.org/10.1093/gji/ggad464
Koçyiğit, A., & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3-4), 317-336. https://doi.org/10.1016/S0040-1951(97)00176-5
KOERI, (2023a). 6 Şubat 2023 Mw7.7 Gaziantep 6 Şubat 2023 Mw.7.6 Kahramanmaraş 20 Şubat 2023 Mw6.4 Hatay Depremleri Ön Değerlendirme Raporu. http://koeri.boun.edu.tr/new/sites/default/files/KRDAE-2023-Deprem-On-Degerlendirme-Raporu.pdf (last accessed April 2025).
KOERI, (2023b). 10 Ağustos 2023 Yeşilyurt Malatya Depremi Basın Bülteni. Boğaziçi Üniversitesi Kandilli Rasathanesi Deprem Araştırma Enstitüsü. http://www.koeri.boun.edu.tr/sismo/2/wp/content/uploads/2023/08/20230810_1747_YESILYURT_MALATYA.pdf (last accessed April 2025).
Köküm, M. (2024). Kinematic and dynamic fault slip analyses: Implications from the surface rupture of the 2023 Elbistan (Kahramanmaraş) (Mw7. 6) earthquake, Türkiye. Journal of Structural Geology, 187, 105235. https://doi.org/10.1016/j.jsg.2024.105235
Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38(1), 323-351. https://doi.org/10.1146/annurev-earth-040809-152419
Li, S., Wang, X., Tao, T., Zhu, Y., Qu, X., Li, Z., Huang, J., & Song, S. (2023). Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone. Remote Sensing, 15, 2618. https://doi.org/10.3390/rs15102618.
McKenzie, D. (1972). Active tectonic of the mediterranean region. Geophysical Journal International, 30(2), 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
Nalbant, S. S., Hubert, A., & King, G. C. P. (1998). Stress coupling between earthquakes in northwest Turkey and the North Aegean Sea. Journal of Geophysical Research: Solid Earth, 103(B10), 24469-24486. https://doi.org/10.1029/98JB01491
Nalbant, S. S., McCloskey, J., Steacy, S., & Barka, A. A. (2002). Stress accumulation and increased seismic risk in eastern Turkey. Earth and Planetary Science Letters, 195(3-4), 291-298. https://doi.org/10.1016/S0012-821X(01)00592-1
Över, S., Demirci, A., & Özden, S. (2023). Tectonic implications of the February 2023 Earthquakes (Mw7. 7, 7.6 and 6.3) in south-eastern Türkiye. Tectonophysics, 866, 230058. https://doi.org/10.1016/j.tecto.2023.230058
Özeren, M.S., & Holt, W.E. (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophysical Journal International, 183(3), 1165-1184. https://doi.org/10.1111/j.1365-246X.2010.04819.x
Özener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., & Dogan, U. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of Geodynamics, 49(3-4), 141-150. https://doi.org/10.1016/j.jog.2010.01.003
Özkan, A. (2009). Magnet (Marmara Gps Ağı) Sürekli GPS İstasyonlarının Dönemsel Etkiler Açısından Kampanya GPS Ölçmelerine Katkıları. Thesis (M.Sc.) Istanbul Technical University, Institute of Science and Technology (in Turkish).
Özkan, A., Solak, H. İ., Tiryakioğlu, İ., Şentürk, M. D., Aktuğ, B., Gezgin, C., ... & Yavaşoğlu, H. H. (2023). Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Turkey) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network. Tectonophysics, 866, 230041. https://doi.org/10.1016/j.tecto.2023.230041
Pamukçu, O. A., Akçığ, Z., Demirbaş, Ş., & Zor, E. (2007). Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164, 2345-2358. https://doi.org/10.1007/s00024-007-0267-7
Pamukçu, O. A., & Akçığ, Z. (2011). Isostasy of the Eastern Anatolia (Turkey) and discontinuities of its crust. Pure and Applied Geophysics, 168(5), 901-917. https://doi.org/10.1007/s00024-010-0145-6
Pamukçu, O., Gönenç, T., Çırmık, A. Y., & Kahveci, M. (2015). Investigation of the Sığacık Bay’s displacement characteristic by using GPS and gravity data in Western Anatolia. Journal of Asian Earth Sciences, 99, 72-84. https://doi.org/10.1016/j.jseaes.2014.12.007
Pamukcu, O. A., Cirmik, A., Doğru, F., Tuşat, E., Uysal, F., Sözbilir, H., ... & Erhan, Z. (2024). The effects of seismic activities following the 30 October 2020 Samos Island earthquakes in Izmir and its surrounding. Contributions to Geophysics and Geodesy, 54(4), 321-343. DOI: 10.31577/congeo.2024.54.4.2
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005JB004051
Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M., & Akyüz, H. S. (2019). Geometry and Paleoseismology of the Malatya Fault (Malatya-Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. Journal of Seismology, 23(2), 319-340. https://doi.org/10.1007/s10950-018-9808-z
Sandvol, E., Turkelli, N., Zor, E., Gok, R., Bekler, T., Gurbuz, C., ... & Barazangi, M. (2003). Shear wave splitting in a young continent‐continent collision: An example from eastern Turkey. Geophysical Research Letters, 30(24), 8041. https://doi.org/10.1029/2003GL017390
Soysal, H., Sipahioğlu, S., Kolcak, D., & Altınok, Y. (1981). Türkiye ve çevresinin tarihsel deprem kataloğu MÖ 2100 – MS 1900, TUBITAK Project, no. TBAG.341, Istanbul. (in Turkish).
Stein, R. S., King, G. C. P., & Lin, J. (1992). Change in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude=7.4 Landers earthquake. Science, 258, 1328-1332. DOI: 10.1126/science.258.5086.1328
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594-604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
Şahin, Ş., & Öksüm, E. (2021). The relation of seismic velocity and attenuation pattern in the East Anatolian fault zone with earthquake occurrence: Example of January 24, 2020 Sivrice Earthquake. Bulletin of the Mineral Research and Exploration, 165, 141-161. https://doi.org/10.19111/bulletinofmre.824032
Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75. https://doi.org/10.1016/0040-1951(81)90275-4.
Şengör, A. M. C., Görür, N., & Şarığlu, F. (1985). Strike-slip faulting and basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds). Strike-slip Faulting and Basin Formation. Society of Economic Mineralogists and Petrologists Special Publication, 37, 227-264. https://doi.org/10.2110/pec.85.37.0211
Şengör, A. M. C., Özeren, S., Genç, T. & Zor, E. (2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003GL017858
Tiryakioglu, I., Yavasoglu, H., Ugur, M. A. U., Ozkaymak, C., Yilmaz, M., Kocaoglu, H., & Turgut, B. (2017). Analysis of October 23 (Mw 7.2) and November 9 (Mw 5.6), 2011 Van earthquakes using long-term GNSS time series. Earth Science Research Journal, 21, 147–156. https://doi.org/10.15446/esrj.v21n3.62812.
Tiryakioğlu, I., Aktuğ, B., Yiğit, C., Yavasoglu, H.H., Sozbilir, H., Özkaymak, C., Poyraz, F., Taneli, E., Bulut, F., Dogru, A., & Özener, H. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6.6) from GPS observations. Geodinamica Acta, 30, 1–14. https://doi.org/10.1080/09853111.2017.1408264.
Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/.
Toker, M., Yavuz, E., Utkucu, M., & Uzunca, F. (2023). Multiple segmentation and seismogenic evolution of the 6th February 2023 (Mw 7.8 and 7.7) consecutive earthquake ruptures and aftershock deformation in the Maras triple junction region of SE-Anatolia, Turkey. Physics of the Earth and Planetary Interiors, 345, 107114. https://doi.org/10.1016/j.pepi.2023.107114
Türkelli, N., Sandvol, E., Zor, E., Gok, R., Bekler, T., Al‐Lazki, A., … & Barazangi, M. (2003). Seismogenic zones in eastern Turkey. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003GL018023
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F. & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
Westaway, R. (2003). Kinematics of the Middle East and eastern mediterranean updated. Turkish Journal of Earth Science, 12(1), 5–46.
Westaway, R. & Arger, J. (1996). The Golbaşı basin, southeastern Turkey: A complex discontinuity in a major strike-slip fault zone. Journal of the Geological Society, 153(5), 729-744. https://doi.org/10.1144/gsjgs.153.5.0729
Westaway, R., Demir, T. & Seyrek, A. (2007). Geometry of the Turkey-Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: the role of the Malatya-Ovacık Fault Zone in eastern Turkey. eEarth Discussions, 2(4), 169-190.
Yazıcı, M., Zabcı, C., Sancar, T., & Natalin, B. A. (2018). The role of intraplate strike-slip faults in shaping the surrounding morphology: the Ovacık Fault (eastern Turkey) as a case study. Geomorphology, 321, 129-145. https://doi.org/10.1016/j.geomorph.2018.08.022
Yıldız, S. S., Ozkan, A., Yavasoglu, H. H., Masson, F., Tiryakioglu, I., Alkan, M. N., & Bilgi, S. (2020). Determination of recent tectonic deformations in the vicinity of Adana–Osmaniye–Hatay–Gaziantep triple junction region by half-space modeling. Comptes Rendus Geoscience, 352(3), 225–234. DOI: 10.5802/crgeos.39
Yildiz, H., Cirmik, A., Pamukcu, O., Özdağ, Ö. C., Gönenç, T., & Kahveci, M. (2021). 12th June 2017 offshore Karaburun-Lesvos Island earthquake coseismic deformation analysis using continuous GPS and seismological data. Turkish Journal of Earth Sciences, 30(3), 341-358. https://doi.org/10.3906/yer-2008-3
Yılmaz, Y. (2019) Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences, 56(11), 1163-1180. https://doi.org/10.1139/cjes-2018-0170
Zabcı, C., Akyüz, H. S., & Sançar, T. (2017). Palaeoseismic history of the eastern part of the North Anatolian Fault (Erzincan, Turkey): Implications for the seismicity of the Yedisu seismic gap. Journal of Seismology, 21(6), 1407-1425. https://doi.org/10.1007/s10950-017-9673-1
Zhao, J. J., Chen, Q., Yang, Y. H., & Xu, Q. (2023). Coseismic Faulting Model and Post-Seismic Surface Motion of the 2023 Turkey–Syria Earthquake Doublet Revealed by InSAR and GPS Measurements. Remote Sensing, 15, 3327. https://doi.org/10.3390/rs15133327.
Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003GL018192
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











