Published

2025-10-29

Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan

Caracterización de las propiedades dinámicas no lineales del suelo para la respuesta sísmica en Islamabad, Pakistán

DOI:

https://doi.org/10.15446/esrj.v29n3.120899

Keywords:

Small-strain stiffness, Shear wave velocity, Resonant column, Seismic site characterization, Islamabad soils (en)
Rigidez de pequeña deformación, Velocidad de onda cortante, Columna resonante, Caracterización del sitio sísmico, Suelos de Islamabad (es)

Downloads

Authors

  • Waqas Ahmed National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
  • Muhammad Waseem Department of Civil Engineering, University of Engineering and Technology, Peshawar
  • Hammad Raza University of Engineering and Technology, Taxila, 47080, Pakistan
  • Muhammad Yasir National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar Pakistan
  • Muhammad Zeeshan National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar Pakistan
  • Saif ullah National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar Pakistan
  • Ihtisham Islam . Department of Geology, Shaheed Benazir Bhutto University Sheringal, 18030, Dir Upper Pakistan
  • Salman Ahmed khattak University of Chinese Academy of Sciences

This study presents a detailed experimental characterization of the small-strain dynamic behavior of fine-grained soils in the Islamabad capital territory, Pakistan, an area of moderate to high seismic hazard with limited site-specific geotechnical data. A comprehensive series of resonant column tests was conducted on reconstituted silty clay and clayey silt samples collected from 15 boreholes across the region. Tests were performed under confining pressures of 50, 100, and 150 kPa to evaluate shear wave velocity, maximum shear modulus (Gmax), the modulus reduction (G/Gmax) with shear strain, and strain-dependent damping behavior. Results reveal that Islamabad soils are characteristically stiff at small strains, with Gₘₐₓ ranging from approximately 40–80 MPa and increasing systematically with confining pressure, while typical Vs values ranged from 160–260 m/s. The normalize shear modulus (G/Gmax) curves showed moderate nonlinearity, with G/Gmax reducing to 0.3–0.5 at maximum strain levels (~0.1–0.2%). Reference strain (γref) values obtained from curve fitting fell between ~0.02–0.08%, further quantifying the onset of modulus reduction. Damping ratios increased from ~0.5% at microstrains to a maximum of 8–12% at higher strains, with minor variation across confining pressures. When compared with standard empirical models, the measured curves exhibited stiffer behavior and lower damping at equivalent strains, highlighting the importance of site-specific calibration. These findings provide critical input for improving seismic site response analyses in Islamabad, directly informing local microzonation studies and contributing to the refinement of Pakistan’s seismic design guidelines.

Este estudio presenta una caracterización experimental detallada del comportamiento dinámico de pequeña deformación en los suelos de grano fino del territorio de Islamabad, Pakistan, una área de riesgo sísmico de moderado a alto con limitada información geotécnica específica. Para ello se realizó una amplia serie de pruebas de columna resonante en muestras de arcilla limosa y limo arcilloso recolectadas en 15 perforaciones a lo largo de la región. Las pruebas se realizaron bajo presión de compresión de 50, 100 y 150 KPa para evaluar la velocidad de la onda transversal (Vs), módulo de corte máximo (Gₘₐₓ), el módulo de reducción (G/Gₘₐₓ) con corte máximo y comportamiento de amortiguamiento dependiente de la deformación. Los resultados muestran que los suelos de Islamabad son característicamente rígidos con pequeñas deformaciones, con un Gₘₐₓ que oscila entre aproximadamente 40 y 80 MPa y aumenta sistemáticamente con la presión de confinamiento, mientras que los valores típicos de Vs oscilaron entre 160 y 260 m/s. Las curvas de módulo de corte normalizado (G/Gₘₐₓ) mostraron una no linealidad moderada, con un G/Gₘₐₓ reduciéndose a 0,3-0,5 a niveles máximos de deformación (~0,1-0,2%). Los valores de deformación de referencia (γref) obtenidos del ajuste de la curva se situaron entre ~0,02 y 0,08%, lo que cuantifica aún más el inicio de la reducción del módulo. Los coeficientes de amortiguamiento aumentaron de ~0,5% a microdeformaciones hasta un máximo de 8-12% a deformaciones más altas, con una variación mínima a través de las presiones de confinamiento. En comparación con los modelos empíricos estándar, las curvas medidas mostraron un comportamiento más rígido y un menor amortiguamiento a deformaciones equivalentes, lo que resalta la importancia de la calibración específica del sitio. Estos hallazgos proporcionan información crucial para mejorar los análisis de respuesta sísmica del sitio en Islamabad, informando directamente los estudios de microzonificación local y contribuyendo al perfeccionamiento de las directrices de diseño sísmico de Pakistán.

References

Aaqib, M., Nguyen, V.-Q., Javaid, O., Khan, A. H., Ashraf, M. A., & Bhusal, B. (2024). Evaluation of empirical SPT N-Vs correlations using 1D site response analysis for shallow bedrock sites in Islamabad, Pakistan. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-17.

Adeel, M. B., Nizamani, Z. A., Aaqib, M., Khan, S., Rehman, J. U., Bhusal, B., & Park, D. (2023). Estimation of VS30 using shallow depth time-averaged shear wave velocity of Rawalpindi–Islamabad, Pakistan. Geomatics, Natural Hazards and Risk, 14(1), 1-21.

Anastasiadis, A., Raptakis, D., & Pitilakis, K. (2001). Thessaloniki's detailed microzoning: subsurface structure as basis for site response analysis. Pure and Applied Geophysics, 158(12), 2597-2633.

Araei, A. A., & Ghodrati, A. (2017). Predictive models for normalized shear modulus and damping ratio of modeled rockfill materials. Acta Geodynamica et Geomaterialia, 14(1), 27-41.

BCP. (2021). Building Code of Pakistan (Seismic Provisions) – BCP-2021. Islamabad, Pakistan: Pakistan Engineering Council.

Blaker, Ø., & DeGroot, D. J. (2020). Intact, disturbed, and reconstituted undrained shear behavior of low-plasticity natural silt. Journal of Geotechnical and Geoenvironmental Engineering, 146(8), 04020062.

Boore, D. M., Thompson, E. M., & Cadet, H. (2011). Regional correlations of VS 30 and velocities averaged over depths less than and greater than 30 meters. Bulletin of the Seismological Society of America, 101(6), 3046-3059.

Bozyigit, I., & Altun, S. (2023). Small-strain behavior and post-cyclic characteristics of low plasticity silts. Bulletin of Earthquake Engineering, 21(2), 791-810.

Cha, M., Santamarina, J. C., Kim, H.-S., & Cho, G.-C. (2014). Small-strain stiffness, shear-wave velocity, and soil compressibility. Journal of Geotechnical and Geoenvironmental Engineering, 140(10), 06014011.

Conti, R., Angelini, M., & Licata, V. (2020). Nonlinearity and strength in 1D site response analyses: a simple constitutive approach. Bulletin of Earthquake Engineering, 18(10), 4629-4657.

Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin.

EPRI. (1993c). Electric Power Research Institute (EPRI), Guidelines for determining design basis ground motions. Method and guidelines for estimating earthquake ground motion in eastern North America, 1, TR-102293.

Govindaraju, L., & Bhattacharya, S. (2012). Site-specific earthquake response study for hazard assessment in Kolkata city, India. Natural Hazards, 61, 943-965.

Guerreiro, P., Kontoe, S., & Taborda, D. (2012). Comparative study of stiffness reduction and damping curves. 15th World Conference on Earthquake Engineering,

Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: measurement and parameter effects (terzaghi leture). Journal of the Soil Mechanics and Foundations Division, 98(6), 603-624.

Ishihara, K., Tatsuoka, F., & Yasuda, S. (1975). Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 15(1), 29-44.

Jadoon, I. A., Hinderer, M., Kausar, A. B., Qureshi, A. A., Baig, M. S., Basharat, M., & Frisch, W. (2015). Structural interpretation and geo-hazard assessment of a locking line: 2005 Kashmir Earthquake, western Himalayas. Environmental Earth Sciences, 73, 7587-7602.

Kanlı, A. I., Tildy, P., Prónay, Z., Pınar, A., & Hermann, L. (2006). VS 30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophysical Journal International, 165(1), 223-235.

Khan, S., & Khan, M. A. (2016). Mapping sediment thickness of Islamabad city using empirical relationships: Implications for seismic hazard assessment. Journal of Earth System Science, 125, 623-644.

Khan, S., & Khan, M. A. (2017). Seismic microzonation of Islamabad–Rawalpindi metropolitan area, Pakistan. Pure and Applied Geophysics, 175, 149-164.

Khan, S., Waseem, M., & Khan, M. A. (2021). A Seismic hazard map based on geology and shear‐wave velocity in Rawalpindi–Islamabad, Pakistan. Acta Geologica Sinica‐English Edition, 95(2), 659-673.

Kishida, T. (2017). Comparison and correction of modulus reduction models for clays and silts. Journal of Geotechnical and Geoenvironmental Engineering, 143(4), 04016110.

Kockar, M., Akgün, H., & Rathje, E. (2010). Evaluation of site conditions for the Ankara Basin of Turkey based on seismic site characterization of near-surface geologic materials. Soil Dynamics and Earthquake Engineering, 30(1-2), 8-20.

Kokusho, T., Aoyagi, T., & Wakunami, A. (2005). In situ soil-specific nonlinear properties back-calculated from vertical array records during 1995 Kobe Earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1509-1521.

L’Heureux, J.-S., & Long, M. (2017). Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017013.

Mahmood, K., Farooq, K., & Memon, S. A. (2016). One dimensional equivalent linear ground response analysis—a case study of collapsed Margalla Tower in Islamabad during 2005 Muzaffarabad Earthquake. Journal of Applied Geophysics, 130, 110-117.

Mog, K., & Anbazhagan, P. (2022). Evaluation of the damping ratio of soils in a resonant column using different methods. Soils and Foundations, 62(1), 101091.

Rahman, A. u., Najam, F. A., Zaman, S., Rasheed, A., & Rana, I. A. (2021). An updated probabilistic seismic hazard assessment (PSHA) for Pakistan. Bulletin of Earthquake Engineering, 19, 1625-1662.

Raza, H., Ahmad, N., Aaqib, M., Jafri, T. H., & Qureshi, M. U. (2025). Seismic site amplification characteristics of Makran subduction zone using 1D non-linear ground response analysis. Applied Sciences, 15(4), 1775.

Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analysis, Report EERC 70-10. University of California, Earthquake Engineering Research Center, Berkeley, CA.

Sheikh, I. M., Pasha, M. K., Williams, V. S., Raza, S. Q., & Khan, K. (2008). Environmental geology of the Islamabad-Rawalpindi area, northern Pakistan. Regional studies of the Potwar-Plateau area, Northern Pakistan. Bulletin, 2078G.

Theland, F., Lombaert, G., Francois, S., Pacoste, C., Deckner, F., & Battini, J. M. (2021). Assessment of small-strain characteristics for vibration predictions in a Swedish clay deposit. Soil Dynamics and Earthquake Engineering, 150, 106804.

Vardanega, P. J., & Bolton, M. D. (2013). Stiffness of clays and silts: normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1575-1589.

Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117(1), 89-107.

Wang, S., Luna, R., & Yang, J. (2017). Effect of plasticity on shear behavior of low-plasticity fine-grained soil. Journal of Materials in Civil Engineering, 29(3), 04016228.

Wang, Y., & Stokoe, K. (2022). Development of constitutive models for linear and nonlinear shear modulus and material damping ratio of uncemented soils. Journal of Geotechnical and Geoenvironmental Engineering, 148(3), 04021192.

Wichtmann, T., Hernández, M. N., & Triantafyllidis, T. (2015). On the influence of a non-cohesive fines content on small strain stiffness, modulus reduction and damping of quartz sand. Soil Dynamics and Earthquake Engineering, 69, 103-114.

Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 453-464.

How to Cite

APA

Ahmed, W., Waseem, M., Raza, H., Yasir, M., Zeeshan, M., ullah, S., Islam, I. & khattak, S. A. (2025). Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan. Earth Sciences Research Journal, 29(3), 347–362. https://doi.org/10.15446/esrj.v29n3.120899

ACM

[1]
Ahmed, W., Waseem, M., Raza, H., Yasir, M., Zeeshan, M., ullah, S., Islam, I. and khattak, S.A. 2025. Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan. Earth Sciences Research Journal. 29, 3 (Oct. 2025), 347–362. DOI:https://doi.org/10.15446/esrj.v29n3.120899.

ACS

(1)
Ahmed, W.; Waseem, M.; Raza, H.; Yasir, M.; Zeeshan, M.; ullah, S.; Islam, I.; khattak, S. A. Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan. Earth sci. res. j. 2025, 29, 347-362.

ABNT

AHMED, W.; WASEEM, M.; RAZA, H.; YASIR, M.; ZEESHAN, M.; ULLAH, S.; ISLAM, I.; KHATTAK, S. A. Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan. Earth Sciences Research Journal, [S. l.], v. 29, n. 3, p. 347–362, 2025. DOI: 10.15446/esrj.v29n3.120899. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/120899. Acesso em: 26 dec. 2025.

Chicago

Ahmed, Waqas, Muhammad Waseem, Hammad Raza, Muhammad Yasir, Muhammad Zeeshan, Saif ullah, Ihtisham Islam, and Salman Ahmed khattak. 2025. “Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan”. Earth Sciences Research Journal 29 (3):347-62. https://doi.org/10.15446/esrj.v29n3.120899.

Harvard

Ahmed, W., Waseem, M., Raza, H., Yasir, M., Zeeshan, M., ullah, S., Islam, I. and khattak, S. A. (2025) “Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan”, Earth Sciences Research Journal, 29(3), pp. 347–362. doi: 10.15446/esrj.v29n3.120899.

IEEE

[1]
W. Ahmed, “Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan”, Earth sci. res. j., vol. 29, no. 3, pp. 347–362, Oct. 2025.

MLA

Ahmed, W., M. Waseem, H. Raza, M. Yasir, M. Zeeshan, S. ullah, I. Islam, and S. A. khattak. “Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan”. Earth Sciences Research Journal, vol. 29, no. 3, Oct. 2025, pp. 347-62, doi:10.15446/esrj.v29n3.120899.

Turabian

Ahmed, Waqas, Muhammad Waseem, Hammad Raza, Muhammad Yasir, Muhammad Zeeshan, Saif ullah, Ihtisham Islam, and Salman Ahmed khattak. “Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan”. Earth Sciences Research Journal 29, no. 3 (October 29, 2025): 347–362. Accessed December 26, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/120899.

Vancouver

1.
Ahmed W, Waseem M, Raza H, Yasir M, Zeeshan M, ullah S, Islam I, khattak SA. Characterization of nonlinear dynamic soil properties for seismic site response in Islamabad, Pakistan. Earth sci. res. j. [Internet]. 2025 Oct. 29 [cited 2025 Dec. 26];29(3):347-62. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/120899

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

78

Downloads

Download data is not yet available.