Published

2021-04-16

Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study

Evaluación del uso de turbas tropicales como materiales alternativos locales para la adsorción de Pb, Zn y Cd: Un estudio de equilibrio

DOI:

https://doi.org/10.15446/esrj.v25n1.84276

Keywords:

Batch equilibrium test, Freundlich isotherm, Langmuir isotherm, Potentially toxic elements, Sorption (en)
Prueba de equilibrio de lote, Isoterma de Freundlich, Isoterma de Langmuir, Elementos potencialmente tóxicos, Sorción (es)

Downloads

Authors

  • Isabela Monici Raimondi São Carlos School of Engineering; University of São Paulo
  • Valéria Guimarães Rodrigues São Carlos School of Engineering; University of São Paulo https://orcid.org/0000-0001-8937-839X
  • Jacqueline Zanin Lima São Carlos School of Engineering; University of São Paulo
  • Jéssica Pelinsom Marques São Carlos School of Engineering; University of São Paulo
  • Luiz Augusto Artimonti Vaz Cronos Consultoria
  • Eny Maria Vieira Department of Chemistry and Molecular Physics, Institute of Chemistry of São Carlos, University of São Paulo

Peat is an organic material that has been widely used as an efficient and low-cost adsorbent. As many studies tend to focus on temperate peats, there is a lack of knowledge about the adsorption mechanism of tropical peats. This paper investigates the use of two Brazilian peats (Cravinhos - C and Luis Antônio - LA) from the Mogi-Guaçu river basin for the adsorption of lead (Pb), zinc (Zn), and cadmium (Cd), in order to contribute to the use of local and easy access materials to remediate contaminated sites. The peats adsorbed a high percentage of cations, especially Pb cations (100.0-46.3%), with commercial peat C showing higher adsorption than peat LA. The removal order was Pb2+ > Cd2+ ≥ Zn2+ for C and Pb2+ > Zn2+ > Cd2+ for LA. The batch data for both peats and for all metals were better fit by the Langmuir isotherm, with adsorption capacities (qm) for Pb, Zn, and Cd of 37.3134, 29.0674 and 21.2890 mmol kg-1 in peat C and 21.7391, 14.2550 and 3.6460 mmol kg-1 in LA, respectively, values comparable to those of other peats and biosorbents. The studied peats are considered efficient, alternative and low-cost adsorptive materials for these metals. The proximity of peatlands to areas with high potential for contamination necessitates the use of local materials to reduce remediation costs.             

La turba es un material orgánico que se ha utilizado ampliamente como un adsorbente eficiente y de bajo costo. Como muchos estudios tienden a centrarse en las turbas templadas, existe una falta de conocimiento sobre el mecanismo de adsorción de las turbas tropicales. Este artículo investiga el uso de dos turbas brasileñas (C y LA) de la cuenca del río Mogi-Guaçu para la adsorción de plomo (Pb), zinc (Zn) y cadmio (Cd). Las turbas adsorbieron un alto porcentaje de cationes, especialmente cationes Pb (100.0-55.5%), con la turba comercial C mostrando una mayor adsorción que la turba LA. El orden de eliminación fue Pb2 +> Cd2 + ≥ Zn2 + para C y Pb2 +> Zn2 +> Cd2 + para LA. La isoterma de Langmuir ajustó mejor los datos de lote para las turbas y para todos los metales, con capacidades de adsorción (qm) para Pb, Zn y Cd de 37.313, 29.070 y 21.288 mmol kg-1 en turba C y 21.739, 14.255 y 3.645 mmol kg-1 en LA, respectivamente, valores comparables a los de otras turbas y biosorbentes. Las turbas estudiadas se consideran materiales adsorbentes eficientes, alternativos y de bajo costo para estos metales. La proximidad de las turberas a las áreas con alto potencial de contaminación requiere el uso de materiales locales para reducir los costos de remediación.

References

Abat, M., Mclaughlin, M. J., Jirby, J. K. and Stacey, S. P. (2012). Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma. 175, 58-63, https://doi.org/10.1016/j.geoderma.2012.01.024.

Abdelhafez, A. A and Li, J. (2016). Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers. 61, 367-375, https://doi.org/10.1016/j.jtice.2016.01.005.

Adriano, D. C. (1986). Trace elements in terrestrial environments. Springer-Verlang, New York, 867 pp.

Alleoni, L. R., Mello, J. W. V. and Rocha, W. S. D. (2009). Eletroquímica, adsorção e troca iônica no solo. Mello, J. W. and Alleoni, L. R. (Editor) Química e Mineralogia do solo. Viçosa / MG: Sociedade Brasileira de Ciência do Solo, 69-130.

Andriesse, J. P. (1988). Nature and Management of Tropical Peat Soils. Soil Resources, Management and Conservation Service. FAO Land and Water Development Division. http://www.fao.org/3/x5872e/x5872e00.htm. (last accessed March 2019).

American Society for Testing and Materials – ASTM. (2016). D4646-16, Standard Test Method for 24-h Batch –Type Measurement of Contaminant Sorption by Soils and Sediments. ASTM International, West Conshohocken, PA.

Agency for Toxic Substances and Diseases Registry – ATSDR. (2012). Toxicological profile for cadmium. U.S Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (last accessed March 2019).

Agency for Toxic Substances and Diseases Registry – ATSDR. (2007). Toxicological profile for lead. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf. (last accessed March 2019).

Agency for Toxic Substances and Diseases Registry – ATSDR. (2005). Toxicological profile for zinc. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp60.pdf. (last acessed March 2019).

Balan, C., Bîlbă, D. and Macoveanu, M. (2008). Removal of cadmium (II) from aqueous solutions by sphagnum moss peat: equilibrium study. Environmental Engineering and Management Journal. 7, no. 1, 17-23. https://doi.org/10.30638/eemj.2008.004.

Balasubramanian, R., Perumal, S. V. and Vijayaraghavan, K. (2009). Equilibrium isotherm studies for the multicomponent adsorption of lead, zinc, and cadmium onto Indonesian peat. Industrial and Engineering Chemistry Research. 48, no. 4, 2093-2099, https://doi.org/10.1021/ie801022p.

Babel, S. and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials. B97, 219–243, https://doi.org/10.1016/S0304-3894(02)00263-7.

Bartczak, P., Norman, M., Klapiszewski, L., Karwańska, N., Kawalec, M., Baczyńska, M., Wysokowski, M., Zdarta, J., Ciesielczyk, F. and Jesionowski, T. (2018). Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry. 11, 1209-1222, https://doi.org/10.1016/j.arabjc.2015.07.018.

Batista, A. P. S., Romão, L. P. C., Arguelho, M. L. P. M., Garcia, C. A. B., Alves, J. P. H., Passos, E. A. and Rosa, A. H. (2009). Biosorption of Cr (III) using in natura and chemically treated tropical peats. Journal of Hazardous Materials. 163, no. 2-3, 517-523. https://doi.org/10.1016/j.jhazmat.2008.06.129.

Bencheikh‐Lehocine M. (1989) Zinc removal using peat adsorption. Environmental Technology Letters. 10, no. 1, 101-108, https://doi.org/10.1080/09593338909384723.

Bloom, P. R. and Mcbride, M. B. (1979). Metal ion binding and exchange with hydrogen ions in acid-washed peat. Soil Science Society of America Journal. 43, no. 4, 687-692, https://doi.org/10.2136/sssaj1979.03615995004300040012x.

Bolan, N., Kunhikrishnan, A., Thangarajan, R.; Kumpiene, J., Park, J.; Makino, T., Kirkham, M. B. and Scheckel, K. (2014) Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?: Review. Journal of Hazardous Materials. 266, 141–166, 2014, https://doi.org/10.1016/j.jhazmat.2013.12.018.

Brown; P. A., Gill, S. A. and Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research. 34, no. 16, 3907-3916. https://doi.org/10.1016/S0043-1354(00)00152-4.

Buchter, B., Davidoff, B., Amacher, M. C., Hinz, C., Iskandar, I. K. and Selim, H. M. (1989). Correlation of Freundlich Kd and n retention parameters with soils and elements. Soil Science. 148, no. 5, 370–379. https://doi.org/10.1097/00010694-198911000-00008.

Bulgariu, L., Bulgariu, D. and Macoveanu, M. (2011). Adsorptive Performances of Alkaline Treated Peat for Heavy Metal Removal. Separation Science and Technology. 46, 1023–1033, https://doi.org/10.1080/01496395.2010.536192.

Carvalho, M. E. K. (2015). Use of peat for removal of potentially toxic metals from a plastics recycling company, Graduate Thesis, São Paulo State University, Sorocaba, Brazil.

Carvalho, M. E. K., Tonello, P. S., Gouveia, D., Rosa, A. H. and Watanabe, C. H. (2017) Turfa e sua aplicação para remoção de metais potencialmente tóxicos, Vieira, E. M., Dick, D. P., Benetti, F. and Pigatin, L. B. F. (Editors). Substâncias húmicas e matéria orgânica natural. Rima, São Carlos, Brazil, 147-160.

Cerqueira, S. da C. A., Romão, L. P. C., Lucas, S. C. O., Fraga, L. E., Simões, M. L., Hammer, P., Lead, J. R., Mangoni, A. P. and Mangrich, A. S. (2012). Spectroscopic characterization of the reduction and removal of chromium (VI) by tropical peat and humin. Fuel. 91, no. 1, 141-146. https://doi.org/10.1016/j.fuel.2011.06.023.

Chen, X. H., Gosset, T. and Thévenot, D. R. (1990). Batch copper ion binding and exchange properties of peat. Water Research. 24, no. 12, 1463-1471. https://doi.org/10.1016/0043-1354(90)90080-P.

Couillard, D. (1994). The use of peat in wastewater treatment: Review. Water Research. 26, no. 6, 1261-1274, https://doi.org/10.1016/0043-1354(94)90291-7.

Coupal, B. and Lalancette, J. M. (1976). The treatment of waste waters with peat moss. Water Research. 10, no. 12, 1071-1076, https://doi.org/10.1016/0043-1354(76)90038-5.

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 97, 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001.

Crescêncio Júnior, F. (2008). A study in lab of peats as a reactive barrier for remediation of aquifers, Graduate Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Egene, C. E., Van Poucke, R., Ok, Y. S., Meers, E. and Tack, F. M. G. (2018). Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. The Science of the Total Environment. 626, 195-202, https://doi.org/10.1016/j.scitotenv.2018.01.054.

Febrianto, J, Kosasiha, A. N., Sunarso, J., Ju, Y. H., Indraswati, N. and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: Summary of recent studies. Journal of Hazardous Materials. 162, no. 2-3, 616–645. http://dx.doi.org/10.1016/j.jhazmat.2008.06.042.

Fernandes, A. N., Almeida, C. A. P., Debacher N. A. D. and Sierra M. M. S. (2010). Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. Journal of Molecular Structure. 982, 62–65, https://doi.org/10.1016/j.molstruc.2010.08.006.

Foo, K.Y. and Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal. 156, 2–10, https://doi.org/10.1016/j.cej.2009.09.013.

Franchi, J. G. (2004). The use of peat as an adsorbent for heavy metals: The example of the contamination of the Ribeira de Iguape river basin with lead and associated metals, Graduate Thesis, University of São Paulo, São Paulo, Brazil.

Freitas, J. M. A. S., Netto, A. M., Corrêa, M. M., Xavier, B. T. L. and Assis, F. X. (2018). Potassium adsorption in soil cultivated with sugarcane. Anais da Academia Brasileira de Ciências. 90, no. 1, 541-555, http://dx.doi.org/10.1590/0001-3765201720160910.

Gosset, T., Trancart, J. L. and Thévenot, D. R. (1986). Batch metal removal by peat – kinetics and thermodynamics. Water Research. 20, no. 1, 21-26, https://doi.org/10.1016/0043-1354(86)90209-5.

Hammi, K. A., Nieto-Latorre, E., Ureña-Amate, M. D., Socías-Viciana, M. M., Miloudi, H. and Debbagh-Boutarbouch, N. (2019). Effect of Peat Addition on Sorption and Leaching of Triazole Fungicides in Oran Soils. Journal of Chemistry. 2019, ID 9019817. https://doi.org/10.1155/2019/9019817.

Ho Y. S. (2006). Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Polish Journal of Environmental Studies. 15, no. 1, 81-86.

Ho, Y. H., Huang, C. T. and Huang, H. W. (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry. 37, no. 12, 1421-1430. https://doi.org/10.1016/S0032-9592(02)00036-5

International Peat Society – IPS. (2008) – Peatlands and Climate Change. http://www.peatsociety.org/sites/default/files/files/PeatlandsandClimateChangeBookIPS2008.pdf. (last acessed February 2019).

Joosten, H. and Clarke, D. (2002). Wise Use of Mires and Peatlands - Background and Principles Including a Framework for Decision-Making, International Mire Conservation Group and International Peat Society, Jyväskylä, Finland. http://www.imcg.net/media/download_gallery/books/wump_wise_use_of_mires_and_peatlands_book.pdf. (last acessed March 2019).

Kabata-Pendias, A. (2011). Trace elements in soils and plants, CRC Press, Boca Raton, United States of America, 505 pp.

Kalmykova, Y., Strömvall, A. M. and Steenari, B. M. (2008). Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. Journal of Hazardous Materials. 152, 885-891, https://doi.org/10.1016/j.jhazmat.2007.07.062.

Kasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Vareshe, M. B. A., Trofino, J. C. and Rodrigues, V. G. S. (2016). Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using the integration of geochemical and microbiological data. Environmental Monitoring and Assessment. 188, no. 12, 698, https://doi.org/10.1007/s10661-016-5708-2.

Koivula, M., Kujala, K., Rönkkömäki, H. and Mäkelä, M. (2009). Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. Journal of Hazardous Materials. 164, no. 1, 345-352, https://doi.org/10.1016/j.jhazmat.2008.08.008.

Lamim, A. P. B., Jordão, C. P., Pereira, J. L. and Bellato, C. R. (2001). Chemical and physical characterization of coastal peat and evaluation of competitive adsorption of copper and zinc. Química Nova. 24, no. 1, 18-23, http://dx.doi.org/10.1590/S0100-40422001000100005.

Langmuir, D. (1997). Aqueous environmental geochemistry.: Prentice Hall, Nova Jersey, United States of America, 600 pp.

Lattuada, R. M., Peralba, M. C. R., Dos Santos, J. H. Z. and Fisch, A. G. (2014). Peat, Rice Husk and Rice Husk Carbon as Low-Cost Adsorbents for Metals from Acidic Aqueous Solutions. Separation Science and Technology. 49, 101–111, https://doi.org/10.1080/01496395.2013.815476.

Leiviskä, T, Khalid, M. K., Gogoi, H. and Tanskanen, J. (2018). Enhancing peat metal sorption and settling characteristics. Ecotoxicology and Environmental Safety. 148, 346-351, https://doi.org/10.1016/j.ecoenv.2017.10.053.

Lim, S. and Lee, A. Y. W. (2015). Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environmental Science and Pollution Research. 22, 10144–10158, https://doi.org/10.1007/s11356-015-4203-6.

Lima, J. Z. (2017). Caracterização Geológica-Geotécnica e estudo de adsorção de Pb, Zn e Cd por turfa e compostos orgânicos, Graduate Thesis, University of São Paulo, São Paulo, Brazil.

Lima, J. Z., Raimondi, I. M., Schalch, V. and Rodrigues, V. G. S. (2018). Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. Journal of Environmental Management. 226, 386-399, https://doi.org/10.1016/j.jenvman.2018.08.047.

Liu, C. C., Wang, M. K., Chiou, C. S., Li, Y. S., Yang, C. Y. and Lin, Y. A. (2009). Biosorption of chromium, copper and zinc by wine-processing waste sludge: Single and multi-component system study. Journal of Hazardous Materials. 171, 386-392. https://doi: 10.1016/j.jhazmat.2009.06.012

Mahmood-ul-Hassan, M., Suthar, V., Rafique, E. Ahmad, R. and Yasin, M. (2015). Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw. Environmental Monitoring and Assessment 187, 470. https://doi.org/10.1007/s10661-015-4692-2.

Marques, J. P., Raimondi, I. M., Lima, J. Z. and Rodrigues, V. G. S. (2019). Caracterização de uma mistura de solo residual com turfa visando seu emprego em barreiras selantes, IX Congresso Brasileiro de Geotecnia Ambiental, São Carlos, Brazil, 953-960.

Mckay, G. and Porter, J. F. (1997). Equilibrium parameters for the sorption of cooper, cadmium and zinc onto peat. Journal of Chemical Technology and Biotechnology. 69, no. 3, 309-320.

Mobasherpour, I., Salahi, E. and Ebrahimi, M. (2012). Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Research on Chemical Intermediates. 38, 2205, https://doi.org/10.1007/s11164-012-0537-6.

Mohamed, A. M. O, Paleologos, E. K., Rodrigues, V. G. S. and Singh, D. N. (2017) Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport. Elsevier, Butterworth-Heinemann.

Oliveira, L. K., Melo, C. A., Goveia, D., Lobo, F. A., Hernández, M. A. A., Fraceto, L. F. and Rosa, A. H. (2015). Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium. Environmental Technology. 36, no. 2, 149-159, https://doi.org/10.1080/09593330.2014.939999.

Orgiazzi, A., Bardgett, R. D. and Barrios, E. (2016). Global soil biodiversity atlas. European Commission, Luxembourg.

Pearson, R. G. (1968). Hard and Soft Acids and Bases, HSAB, Part I: Fundamental principles. Journal of Chemical Education. 45, no. 9, 581-587.

Petroni, S. L. G. (2004). Kinetic and equilibrium evaluation of the adsorption process of cadmium, copper and nickel metal ions in peat, Graduate Thesis, IPEN – Nuclear and Energy Research Institute - associated to the University of São Paulo, Brazil.

Petroni, S. L. G, Pires, M. A. F. and Munita C. S. (2000). Adsorption of zinc and cadmium on peat columns. Química Nova. 23, no. 4, 477-481, http://dx.doi.org/10.1590/S0100-40422000000400009.

Poots, V. J. P., McKay, G., and Healy, J. J. (1978) Removal of Basic Dye from Effluent Using Wood as an Adsorbent. Journal (Water Pollution Control Federation). 50, no. 5, 926-935, https://www.jstor.org/stable/25039656.

Qin, F., Wen, B., Shan, X. Q., Xie, Y. N., Liu, T., Zhang, S. Z. and Khan, S. U. (2006). Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution. 144, no. 2, 669-680, https://doi.org/10.1016/j.envpol.2005.12.036.

Raimondi, I. M., Lima J. Z. and Rodrigues V. G. S. (2019). The Characterization of Tropical Peats for Potentially Toxic Metals Adsorption Purposes in an Abandoned Mine Area, Shakoor A., and Cato K. (Editors) IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 - Volume 2, Springer, Cham, 2019, 129-134. https://doi.org/10.1007/978-3-319-93127-2_19.

Reddad, Z., Gerente, C., Andres, Y. and Le Cloirec, P. (2002). Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies. Environmental. Science and Technology. 36, no. 9, 2067-2073, https://doi.org/10.1021/es0102989.

Roy, W. R., Krapac, I. G., Chou, S. F. J. and Griffin, R. A. (1992). Batch Type Procedures for Estimating Soil Adsorption of Chemicals. Technical resource document. EPA/530-SW-87-006-F, Cincinnati, EUA.

Santos, M. D. C. (1998). Study of the acid adsorption mechanisms of lead and zinc metals in a peat from Jaconé – RJ, Graduate Thesis, University of São Paulo, São Paulo, Brazil.

Santos, Q. O., Moreno, I., Santos, L., Santos, A. G., Souza, V. S. and Bezerra, M. A. (2016). Application of modified simplex on the development of a preconcentration system for cadmium determination in sediments, food and cigarettes. Anais da Academia Brasileira de Ciências. 88, no. 2, 791-799, http://dx.doi.org/10.1590/0001-3765201620150209.

Sharma, P., Kaur, H., Sharma, M. and Sahore, V. (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment. 183, 151. https://doi.org/10.1007/s10661-011-1914-0.

Shimada, H., Motta, J. F. M., Cabral Jr., M. and Nakano, S. (1981). Prospecção de turfa no Estado de São Paulo. Simpósio Regional de Geologia, Curitiba, Brazil, 259-273.

Siegel, F.R. (2002). Environmental geochemistry of potentially toxic metals. Springer, Berlin, 218 p.

Silva, B., Martins, M., Rosca, M., Rocha, V., Lago, A., Neves, I. C. and Tavares, T. (2020). Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Separation and Purification Technology. 235, 116-139, https://doi.org/10.1016/j.seppur.2019.116139.

Simantiraki, F. and Gidarakos, E. (2015). Comparative assessment of compost and zeolite utilization for the simultaneous removal of BTEX, Cd and Zn from aqueous phase: batch and continuous flow. Journal of Environmental Management. 159, 218-226, https://doi.org/10.1016/j.jenvman.2015.04.043.

Soares, M. R. and Casagrande, J. C. (2000) Adsorção e modelos. Ribeiro, M. R., Nascimento, C. W., Ribeiro, F. M. R. and Cantalice, J. R. B. (Editors) Tópicos e ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, Brazil, p. 71-184.

Sõukand, U., Kängsepp, P., Tenno, R. K. T., Mathiasson, L. and Hogland, W. (2010). Selection of adsorbents for treatment of leachate: batch studies of simultaneous adsorption of heavy metals. Journal of Material Cycles and Waste Management. 12, no. 1, 57-65, https://doi.org/10.1007/s10163-009-0270-4.

Spedding, P. J. (1988). Peat. Fuel. 67, no. 7, 883-900, https://doi.org/10.1016/0016-2361(88)90087-7.

Sposito, G. (2004). The surface chemistry of natural particles. Oxford University Press. 256 p.

World Energy Resources – WER (2013). https://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf (last acessed February 2019).

World Health Organization – WHO. (2001). Environmental Health Criteria 221 – Zinc. Geneva. http://www.who.int/ipcs/publications/ehc/ehc_221/en/ (last acessed March 2019).

Yong, R. N. and Mulligan, C. N. (2003). Natural attenuation of contaminants in soils. CRC Press. 336 p.

Zehra T., Priyantha, N., Lim L. B. L. and Iqbal E. (2014). Sorption characteristics of peat of Brunei Darussalam V: Removal of Congo red dye from aqueous solution by peat. Desalination and Water Treatment. 54, no. 9, 2592-2600, https://doi.org/10.1080/19443994.2014.899929.

Zhang, J., He, M., Lin, C. and Shi Y. (2010). Phenanthrene sorption to humic acids, humin, and black carbon in sediments from typical water systems in China. Environmental Monitoring and Assessment. 166, 445–45, https://doi.org/10.1007/s10661-009-1014-6.

Zulkifley, M. T. M., Fatt, N. T., Konjing, Z. and Ashraf, M. A. (2016). Development of tropical lowland peat forest phasic community zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Earth Sciences Research Journal. 20, no. 1, 01 - 010.

How to Cite

APA

Raimondi, I. M., Rodrigues, V. G., Lima, J. Z., Marques, J. P., Vaz, L. A. A. and Vieira, E. M. (2021). Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth Sciences Research Journal, 25(1). https://doi.org/10.15446/esrj.v25n1.84276

ACM

[1]
Raimondi, I.M., Rodrigues, V.G., Lima, J.Z., Marques, J.P., Vaz, L.A.A. and Vieira, E.M. 2021. Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth Sciences Research Journal. 25, 1 (Apr. 2021). DOI:https://doi.org/10.15446/esrj.v25n1.84276.

ACS

(1)
Raimondi, I. M.; Rodrigues, V. G.; Lima, J. Z.; Marques, J. P.; Vaz, L. A. A.; Vieira, E. M. Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth sci. res. j. 2021, 25.

ABNT

RAIMONDI, I. M.; RODRIGUES, V. G.; LIMA, J. Z.; MARQUES, J. P.; VAZ, L. A. A.; VIEIRA, E. M. Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth Sciences Research Journal, [S. l.], v. 25, n. 1, 2021. DOI: 10.15446/esrj.v25n1.84276. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/29-40. Acesso em: 1 oct. 2024.

Chicago

Raimondi, Isabela Monici, Valéria Guimarães Rodrigues, Jacqueline Zanin Lima, Jéssica Pelinsom Marques, Luiz Augusto Artimonti Vaz, and Eny Maria Vieira. 2021. “Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study”. Earth Sciences Research Journal 25 (1). https://doi.org/10.15446/esrj.v25n1.84276.

Harvard

Raimondi, I. M., Rodrigues, V. G., Lima, J. Z., Marques, J. P., Vaz, L. A. A. and Vieira, E. M. (2021) “Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study”, Earth Sciences Research Journal, 25(1). doi: 10.15446/esrj.v25n1.84276.

IEEE

[1]
I. M. Raimondi, V. G. Rodrigues, J. Z. Lima, J. P. Marques, L. A. A. Vaz, and E. M. Vieira, “Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study”, Earth sci. res. j., vol. 25, no. 1, Apr. 2021.

MLA

Raimondi, I. M., V. G. Rodrigues, J. Z. Lima, J. P. Marques, L. A. A. Vaz, and E. M. Vieira. “Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study”. Earth Sciences Research Journal, vol. 25, no. 1, Apr. 2021, doi:10.15446/esrj.v25n1.84276.

Turabian

Raimondi, Isabela Monici, Valéria Guimarães Rodrigues, Jacqueline Zanin Lima, Jéssica Pelinsom Marques, Luiz Augusto Artimonti Vaz, and Eny Maria Vieira. “Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study”. Earth Sciences Research Journal 25, no. 1 (April 16, 2021). Accessed October 1, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/29-40.

Vancouver

1.
Raimondi IM, Rodrigues VG, Lima JZ, Marques JP, Vaz LAA, Vieira EM. Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth sci. res. j. [Internet]. 2021 Apr. 16 [cited 2024 Oct. 1];25(1). Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/29-40

Download Citation

CrossRef Cited-by

CrossRef citations8

1. Jacqueline Zanin Lima, Renan Marques Lupion, Isabela Monici Raimondi, Osni José Pejon, Valéria Guimarães Silvestre Rodrigues. (2021). Sorption Efficiency of Potentially Toxic Elements onto Low-Cost Materials: Peat and Compost. Sustainability, 13(22), p.12847. https://doi.org/10.3390/su132212847.

2. Olga Shvartseva, Tatiana Skripkina, Olga Gaskova, Ekaterina Podgorbunskikh. (2022). Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water, 14(13), p.2114. https://doi.org/10.3390/w14132114.

3. Jacqueline Zanin Lima, Isabela Monici Raimondi Nauerth, Eduardo Ferreira da Silva, Osni José Pejon, Valéria Guimarães Silvestre Rodrigues. (2023). Competitive sorption and desorption of cadmium, lead, and zinc onto peat, compost, and biochar. Journal of Environmental Management, 344, p.118515. https://doi.org/10.1016/j.jenvman.2023.118515.

4. Jacqueline Zanin Lima, Eduardo Anselmo Ferreira da Silva, Valéria Guimarães Silvestre Rodrigues. (2024). Sorption and economic viability of peat, compost and biochar for zinc-contaminated site. Environmental Geotechnics, 11(6), p.459. https://doi.org/10.1680/jenge.22.00046.

5. Jéssica Pelinsom Marques, Isabela Monici Raimondi Nauerth, Mariana Consiglio Kasemodel, Valéria Guimarães Silvestre Rodrigues. (2024). Systematic review of alternative materials that improve retention of potentially toxic metals in soil/clay liners in waste disposal areas. Environmental Monitoring and Assessment, 196(4) https://doi.org/10.1007/s10661-024-12546-w.

6. Jacqueline Zanin Lima, Allan Pretti Ogura, Evaldo Luiz Gaeta Espíndola, Eduardo Ferreira da Silva, Valéria Guimarães Silvestre Rodrigues. (2024). Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility. Chemosphere, 352, p.141521. https://doi.org/10.1016/j.chemosphere.2024.141521.

7. Jacqueline Zanin Lima, Eduardo Ferreira da Silva, Carla Patinha, Valéria Guimarães Silvestre Rodrigues. (2022). Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar. Journal of Environmental Management, 321, p.115968. https://doi.org/10.1016/j.jenvman.2022.115968.

8. I. M. Raimondi, E. M. Vieira, L. A. A. Vaz, V. G. S. Rodrigues. (2022). Comparison of sugarcane pressmud with traditional low-cost materials for adsorption of lead and zinc in mining areas. International Journal of Environmental Science and Technology, 19(6), p.4627. https://doi.org/10.1007/s13762-021-03420-0.

Dimensions

PlumX

Article abstract page views

472

Downloads

Download data is not yet available.