Published

2016-10-01

The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling

DOI:

https://doi.org/10.15446/esrj.v20n4.38666

Keywords:

Numerical modelling, South Qinling, Bashan Arc, Dabashan, Thrust nappe structure, Modelado numérico, Qinling Sur, Arco Bashan, montañas Dabashan, falla de cabalgamiento. (en)

Downloads

Authors

  • Xiaoning Zhang
  • Yunpeng Dong

The Dabashan thrust nappe structure at the southern margin of the Qinling orogenic belt suffered at least two stages of evolution which are Late Triassic plate subduction collisional orogeny between North China block, Qinling micro-plate and Yangtze block followed by intracontinental orogeny since the Meso-Cenozoic. A prominent topography characteristic within the Dabashan area is a southwestward extrusive arc (Bashan Arc fault) that is one of key factors to understand the geodynamic condition of the Dabashan thrust nappe structure.

In this work, two-dimensional plan-view models are constructed to simulate the collisional and intracontinental orogenic movements, and the factors that may control the formation of the Bashan Arc fault are analysed. The modelling results show that the compressive stress produced by the plates collision along both north and south boundaries is the main driving force. The dextral shearing derived from the inconsistent shape on the block margins is the main controller. Rigid tectonic units such as Bikou and Hanan-Micangshan terranes, Foping and Wudang domes, as well as Shennongjia-Huangling anticline also contribute as “anchor” effects. Additionally, the rheology properties of rock material in the Dabashan area affect the shape of the arc. 


Condición geológica y geodinámica para la formación estructural de la falla de cabalgamiento en las montañas Dabashan basada en el modelo numérico del software FLAC 


Resumen

La estructura de la falla de cabalgamiento de las montañas Dabashan en el margen sur del cinturón orogénico de Qinling sufrió por lo menos dos etapas de evolución, la colisión orogénica del Triásico Superior entre el bloque de la China del Norte, la microplaca de Qinling y el bloque Yangtze, y la orogénesis intracontinental desde el Meso-Cenozoico. Una característica topográfica prominente del área de Dabashan es un arco extrusivo (falla Arco de Bashan) hacia el suroeste, que es un factor determinante para entender la condición geodinámica de la falla de cabalgamiento en las montañas Dabashan. En este trabajo se construyeron modelos bidimensionales planos para simular los movimientos de colisión e intracontinental orogénicos y se analizaron los factores que podrían controlar la formación de la falla del Arco de Bashan. Los resultados del modelado muestran que el esfuerzo de compresión producido por las placas de colisión en los límites norte y sur es la principal fuerza impulsora de la falla. La principal controladora es la fuerza de cizallamiento dextral derivada de la forma inconsistente en los margenes del bloque. Las unidades tectónicas rígidas como los terrenos Bikou y Hanan- Micangshan, el domo Foping y Wudang, al igual que el anticlinal Shennongjia-Huangling tienen funciones de ancla. Adicionalmente, las propiedades reológicas del material rocoso en el área Dabashan afectan la forma del arco. 


References

Ames, L., Zhou, G.Z., Xiong, B.C., 1996. Geochronology and isotopic character of ultrahigh- pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15, 472–489.

Bader, T., Ratschbacher, L., Franz, L., Yang, Z., Hofmann, M., Linnemann, U., Yuan, H., 2013a. The heart of China revisited, I. Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia. Tectonics 32, 661–687.

Bader, T., Franz, L., Ratschbacher, L., Capitani, C.d., Webb, A.A.G., Yang, Z., Pfänder, J.A., Hofmann, M., Linnemann, U., 2013b. The heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage. Tectonics 32, 922–947.

Bandis, S.C., Lumsden, A.C., Barton., N.R., 1983. Fundamentals of Rock Joint Deformation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 20, 249-268.

Cai, X.L., Wei, X.G., Wu, D.C., Hou, J.Y., 1988. Nappe structure patterns in the Wudang mountains. Journal of Chengdu University of Technology (Science & Technology Edition), 4, 30–39 (in Chinese with English abstract).

Cheng, W.Q., Yang, K.G., 2009. Structural evolution of Dabashan Mountain: evidence from ESR dating. Earth Science Frontiers 16 (3), 197-206 (in Chinese with English abstract).

Cundall, P.A., Board, M., 1988. Amicrocomputer program for modelling large-strain plasticity problems. Proceedings of the Sixth International Conference on Numerical methods in Geomechanics 6, pp. 2101–2108.

Cundall, P.A., Hart., R.D., 1992. Numerical Modeling of Discontinua. Engr. Comp. 9, 101-113.

Dieterich, J.H., Carter, N.L., 1969. Stress-history of folding. Am. J. Sci. 267, 129-154.

Dong, S.W., Hu, J.M., Li, S.Z., Shi, W., Gao, R., Liu, X.C., Xue, H.M., 2005. The Jurassic deformation in the Dabie Mountains and its tectonic significances. Acta Petrologica Sinica 21 (4), 1189-1194 (in Chinese with English abstract).

Dong, S., Hu, J., Cui, J., Meng, Q., Shi, W., Zhang, Z., Liu, G., 2006. Jurassic superposed folding and Jurassic foreland in the Daba Mountain,Central China. Acta Geoscientica Sinica 27, 403-410.

Dong, Y.P., Zha, X.F., Fu, M.Q., Zhang, Q., 2008. The structures of the Daba-shan fold-thrust belt, southern Qinling, China. Geological Bulletin of China 27, 1493–1508.

Dong, S. W., Shi, W., Zhang, Y. Q., et al., 2010. The Tectonic Stress Field in the Dabashan Orogen Resulting from Late Mesozoic Intra-Continental Orogeny. Acta Geoscientica Sinica, 31(6): 769–780 (in Chinese with English Abstract).

Dong, Y.P., Zhang, G.W., Hauzenberger, C., Neubauer, F., Yang, Z., Liu, X.M., 2011a. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 122, 39–56.

Dong, Y.P., Zhang, G.W., Neubauer, F., Liu, X.M., Genser, J., Hauzenberger, C., 2011b. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences 41, 213-237.

Dong, Y.P., Genser, J., Neubauer, F., Zhang, G.W., Liu, X.M., Yang, Z., Heberer, B., 2011c. U–Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research 19, 881–893.

Dong, Y.P., Liu, X.M., Santosh, M., Chen, Q., Zhang, X.N., Li, W., He, D.F., Zhang, G.W., 2012a. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: constraints from zircon U–Pb geochronology and geochemistry. Precambrian Research 196–197, 247–274.

Dong, Y.P., Liu, X.M., Zhang, G.W., Chen, Q., Zhang, X.N., Li, W., Yang, C., 2012b. Triassic diorites and granitoids in the Foping area: constraints on the conversion from sub- duction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences 47, 123–142.

Dong, Y.P., Liu, X.M., Neubauer, F., Zhang, G.W., Tao, N., Zhang, Y.G., Zhang, X.N., Li, W., 2013. Timing of Paleozoic amalgamation between the North China and South China Blocks: evidence from detrital zircon U–Pb ages. Tectonophysics 586, 173–191.

Dong, Yunpeng, Santosh, M., 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29, 1-40.

Edmond, J.M., Paterson, M.S., 1972. Volume changes during the deformation of rocks at high pressures. Int. J. Rock Mech. Mining Sci 9, 161-182.

Enkin, R.J., Yang, Z., Chen, Y., Courtillot, V., 1992. Paleomagnetic constraints on the geodynamic history of the major blocks of China from Permian to the present. Journal of Geophysical Research 97, 13953–13989.

Faure, M., Lin, W., Le Breton, N., 2001. Where is the North China–South China block boundary in eastern China. Geology 29, 119–122.

Guo, Z., Deng, K., and Han, Y., 1996, Formation and Evolution of the Sichuan Basin: Beijing, Geologic Publishing House, 200 p.

Hacker, B.R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., Dong, S.W., 1998. U/Pb zir- con ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth and Planetary Science Letters 161, 215–230.

He, J.K., Lu, H.F., Zhang, Q., Zhu, B., 1997. The thrust tectonics and it's transpressive geodynamics in Southern Dabashan Mountains. Geological Journal of China Universities 3, 419-428.

He, J.K., Lu, H.F., Zhu, B., 1999. The tectonic inversion and its geodynamic processes in northern Daba Mountains of eastern Qinling orogenic belt. Scientia Geologica Sinica, 34 (2) , 139–153.

Hobbs, B.E., Muhlhaus, H.B., Ord, A., 1990. Instability, softening and localisation of deformation. In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation Mechanisms, Rheology and Tectonics. Geological Society of London Special Publication, pp. 143-165.

Hsu, K.J., Wang, Q.C., Li, J.L., Zhou, D., Sun, S., 1987. Tectonic evolution of Qinling moun- tains, China. Eclogae Geologicae Helvetiae 80, 735–752.

Hu, J.M., Shi, W., Qu, H.J., Chen, H., Wu, G.L., Tian, M., 2009. Mesozoic deformation of Dabashan curvilinear structural belt of Qinling structural belt. Earth Science Frontiers 16 (3), 49-68 (in Chinese with English abstract).

Hu, J.M., Chen, H., Qu, H.J., Wu, G.L., Yang, J.X., Zhang, Z.Y., 2012. Mesozoic defor- mations of the Dabashan in the southern Qinling orogen, central China. Journal of Asian Earth Sciences. 47, 171-184.

Huang, J.J., 2000. Research on the stress fields in superposed fold area e an example from Northeastern Sichuan. Scientia Geologica Sinica 35 (2), 140-150 (in Chinese with English abstract).

Itasca, 2005. FLAC: Fast Lagrangian Analysis of Continua, user manual, version 5.0. Itasca Consulting Group, Inc., Minneapolis.

Jiang, C., Zhizhi, Z., 1982. Qinling mountains orocline. In: Jiqing, H. (Ed.), Tectonic Structure in China and Nearby Region. Geology Publishing House, Beijing, pp. 102-114.

Jing, L., 2003. A reviewof techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences 40, 283-353.

Kröner, A., Zhang, G.W., Sun, Y., 1993. Granulites in the Tongbai Area, Qinling Belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics 12, 245–255.

Kulhawy, F.H., 1975. Stress Deformation Properties of Rock and Rock Discontinuities. Engineering Geology 9, 327-350.

Li, S.G., Xiao, Y.L., Liou, D.L., Chen, Y.Z., Ge, N.J., Zhang, Z.Q., Sun, S.S., Zhang, R.Y., Hart, S.R., Wang, S.S., 1993. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology 109, 89–111.

Li, Z., Liu, S., Luo, Y., 2006. Southern Dabashan foreland fold-thrust belt in central China. Geotectonics et Metallogenia 30, 294-304.

Li, S.Z., Kusky, T.M., Wang, L., Zhang, G.W., Lai, S.C., Liu, X.C., Dong, S.W., Zhao, G.C., 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: insights from the Mianlue suture. Gondwana Research 12, 121-143.

Li, S.Z., Kusky, M.T., Zhao, G.C., Liu, X.C., Zhang, G.W., Kopp, H., Wang, L., 2010. Two-stage Triassic exhumation of HPeUHP terranes in the western Dabie orogen of China: constraints from structural geology. Tectonophysics 490, 267-293.

Li, Q.S., Gao, R., Wang, H.Y., Zhang, J.S., Li, P.W., Lu, Z.W., Guan, Y., Hou, H.S., 2011. Lithospsheric structure of northeastern Sichuan e Dabashan basin e range system and top-deep deformation coupling. Acta Petrologica Sinica 27 (3), 612-620 (in Chinese with English abstract).

Li, P.Y., Zhang, J.J., Guo, L., Yang, X.Y., 2012. Structural features and deformational ages of the northern Dabashan thrust belt. Geoscience Frontiers 3 (1), 41-49.

Li, Z.H., Xu, Z., Gerya, T., Burg, J.P., 2013. Collision of continental corner from 3-D numerical modeling. Earth and Planetary Science Letters 380, 98-111.

Li, N., Cheng, Y.J., Santosh, M., Pirajno, F., 2015. Compositional polarity of Triassic granit- oids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys. Gondwana Research 27, 244–257.

Lin, G., Wang, Y.H., Guo, F., Wang, Y.J., Fan, W.M., 2004. Geodynamic modeling of crustal deformation of the North China Block: a preliminary study. J. Geophys. Eng. 1, 63-69.

Liu, S., Li, Z., Liu, s., 2006. Formation and evolution of Dabashan foreland basin and fold- and thrust belt. Geological Publishing House, Beijing.

Liu, L.P., Li, S.Z., Liu, B., Liu, E.S., Dai, L.M., Zhang, G.W., 2011. Geometry and timing of Mesozoic deformation in the western part of the Xuefeng Tectonic Belt (South China): implication for intra-continental deformation. Journal of Asian Earth Sciences. 49, 330-338.

Luo, S., Zeng, Q., Tu, T., Song, M., He, T., 2007. Tectonic modeling and seismic data tectonic interpretationin east Michangshan and west Dabashan front,Sichuan Basin Natural Gas Exploration & Development 3, 16-19.

Mattauer, M., Matte, P., Malavieille, J., Tapponnier, P., Maluski, H., Xu, Z., Lu, Y., Tang, Y., 1985. Tectonics of the Qinling belt: build up and evolution of eastern Asia. Nature 317, 496–500.

Meng, Q.R., Zhang, G.W., 1999. Timing of collision of the North and South China blocks: controversy and reconciliation. Geology 27, 123–126.

Meng, Q.R., Wang, E.C., Hu, J.M., 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: implication for continued clockwise rotation of the South China block. GSA Bulletin 117 (3e4), 396-410.

Okay, A.I., Sengör, A.M.C., 1993. Tectonics of an ultra-high pressure metamorphic terrane: the Dabie Shan/Tongbai Shan orogen, China. Tectonics 12, 1320–1334.

Ord, A., 1991. Deformation of rock: a pressure-sensitive, dilatant material. Pure Appl. Geophys 137, 337-366.

Qu, H.J., Hu, J.M., Cui, J.J., Wu, G.L., Tian, M., Shi, W., Zhao, S.L., 2009. Jurassic sedi- mentary filling process of Zigui basin in the eastern section of Daba Mountain tectonic belt and its structural evolution. Acta Geologica Sinica 83 (9), 1255-1268 (in Chinese with English abstract).

Ranalli, G., 1987. Rheology of the Earth. Allen and Unwin, London.

Ratschbacher, L., Hacker, B.R., Calvert, A., Webb, L.E., Grimmer, J.C., McWilliams, M.O., Ireland, T., Dong, S.W., Hu, J., 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366, 1-53.

Ratschbacher, L., Franz, L., Enkelmann, E., Jonckeere, R., Poerschke, A., Hacker, B.R., Dong, S.W., Zhang, Y.Q., 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic–Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai–Xinxian–Dabie Mountains. Geological Society of America Special Publication 403, 45–75.

Ren, J.S., Zhang, Z.K., Niu, B.G., Liu, Z.G., 1986. On the Qinling Orogenic Belt-integration of the Sino-Korean and Yangtze Blocks, Qinling Orogenic Belt. Northwest University Press, Xi'an, pp. 99–110 (in Chinese with English abstract).

Rosso, R.S., 1976. A Comparison of Joint Stiffness Measurements in Direct Shear, Triaxial Compression, and In Situ. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 13, 167-172.

Sengor, A.M.C., 1985. East Asia tectonic collage. Nature 318, 16–17.

Shen, C.B., Mei, L.F., Liu, Z.Q., Xu, S.H., 2009. Apatite and zircon fission track data, evidences for the Mesozoic Cenozoic uplift of Huangling dome, central China. Journal Mineral Petrologica 29 (2), 54-60 (in Chinese with English abstract).

Shi, W., Dong, S.W., Hu, J.M., Zhang, Z.Y., Liu, G., 2007. An analysis of superposed deformation and tectonic stress fields of the northern segment of Daba Mountain foreland. Acta Geologica Sinica 81 (10), 1314-1327 (in Chinese with English abstract).

Shi, W., Zhang, Y.Q., Dong, S.W., Hu, J.M., Wiesinger, M., Ratschbacher, L., Jonckheere, R., Li, J.H., Tian, M., Chen, H., Wu, G.L., Qu, H.J., Ma, L.C., Li, H.L., 2012. Intra-continental Dabashan orocline, southwestern Qinling, central China. Journal of Asian Earth Sciences 46, 20-38.

Shi, W., Li, J., Tian, M., Wu, G., 2013. Tectonic evolution of the Dabashan orocline, central China: Insights from the superposed folds in the eastern Dabashan foreland. Geoscience Frontiers 4, 729-741.

Strayer, L.M., Hudleston, P.J., Lorig, L.J., 2001. A numerical model of deformation and fluid-flow in an evolving thrust wedge. Tectonophysics 335, 121-145.

Tan, X.D., Kodama, K.P., Gilder, S., 2007. Paleomagnetic evidence and tectonic origin of clockwise rotations in the Yangtze fold belt, South China Block. Geophysical Journal International 168, 48-58.

Treagus, S.H., 1973. Buckling stability of a viscous single-layer system, oblique to the principal compression. Tectonophysics 19, 271-289.

Turcotte, D.L., Schubert, G., 1982. Geodynamics: Applications of Continuum Physics to Geological Problems. Wiley, New York.

Vermeer, P.A., De Borst, R., 1984. Non-associated plasticity for soils, concrete and rock. Heron 29, 1-64.

Wang, E., Meng, Q., Burchfiel, B.-C., Zhang, G., 2003. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan Belt in East China. Geology 31, 307-310.

Wang, Z.C., Zhao, W.Z., Xu, A.N., Li, D.H., Cui, Y., 2006. Structure styles and their deformation mechanisms of Dabashan foreland thrust belt in the north of Sichuan basin. Geoscience 20 (3), 429-435 (in Chinese with English abstract).

Wang, R., Zhang, Y.Q., Xie, G., Xu, H., 2011. Origin of the Dabashan Foreland Salient:Insights from Sandbox Modeling. Acta geologica sinica 85, 1410-1419.

Wang, B., Zhang, G., Yang, Z., 2013. New Mesozoic paleomagnetic results from the northeastern Sichuan basin and their implication. Tectonophysics 608, 418-427.

Williams, J.R., Lewis, R.W., Zienkiewicz, O.C., 1978. A finite-element analysis of the role of initial perturbations in the folding of a single viscous layer. Tectonophysics 45, 187-200.

Wu, H., Shi, W., Dong, S., Tian, M., 2009. A numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain Foreland. Earth Science Frontiers 16, 190-196.

Xia, B., Zhang, Y., Cui, X.J., Liu, B.M., Xie, J.H., Zhang, S.L., Lin, G., 2006. Understanding of the geological and geodynamic controls on the formation of the South China Sea: A numerical modelling approach. Journal of Geodynamics 42, 63-84.

Xu, Y.J., Yang, K.G., Ma, C.Q., 2005. Deformation Characteristics and the ESR Dating of Chengkou-Fangxian Fault Zone in the Qinling area. GEOSCIENCE 19.

Xu, Z.Q., Lu, Y.L., Tang, Y.Q., Zhang, Z., 1988. Formation of Composite Mountain Chains of the East Qinling–Deformation, Evolution and Plate Dynamics. China Environmental Science Press, Beijing, pp. 1–193.

Xu, C.H., Zhou, Z.Y., Chang, Y., Guillot, F., 2010. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: constraints from fission-track and (U Th)/He thermochronology. Science in China (Earth Sciences) 53 (11), 1634-1646 (in Chinese with English abstract).

Yue, G.Y., Du, S.Q., Huang, J.J., Yang, W.N., 1996. Principle of Structural Compounding and Conjunction. Chengdu University of Science and Technology Press, Chengdu, pp. 15-42 (in Chinese).

Zhang, Y.R., 1985. The ancient Tongbai–Xinyang ophiolite zone and mélange. Regional Geology of China 13, 143–158 (in Chinese with English abstract).

Zhang, G.W., Mei, Z.C., Zhou, D.W., Sun, Y., Yu, Z.P., 1987. Formation and Evolution of the Qinling Orogenic Belt. Northwest University Press, Xi'an, pp. 1–191 (in Chinese with English abstract).

Zhang, G.W., Yu, Z.P., Sun, Y., Cheng, S.Y., He, B., Li, T.H., Xue, F., Zhang, C.L., 1989. The major suture zone of the Qinling orogenic belt. Journal of Southeast Asian Earth Sciences 3, 63–76.

Zhang, G.W., Meng, Q.R., Yu, Z.P., Sun, Y., Zhou, D.W., Guo, A.L., 1996a. Orogenesis and dynamics of Qinling orogen. Science in China (Series D) 26, 193–200.

Zhang, G.W., Zhang, B.R., Yuan, X.C., Xiao, Q.H., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing, pp. 1–855.

Zhang, Y., Hobbs, B.E., Ord, A., Muhlhaus, H.-B., 1996b. Computer simulation of single layer buckling. J. Struct. Geol 18, 643-655.

Zhang, Y., Scheibner, E., Ord, A., Hobbs, B.E., 1996c. Numerical modelling of crustal stresses in the eastern Australian passive margin. Aust. J. Earth Sci. 43, 161-175.

Zhang, Y., Mancktelow, N., S., Hobbs, B.E., Ord, A., Muhlhaus, H.-B., 2000. Numerical modelling of single-layer folding: clarification of an issue regarding the effect of computer codes and the influence of initial irregularities. J. Struct. Geol. 22, 1511-1522.

Zhang, G.W., Dong, Y.P., Lai, S.C., 2004. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling–Dabie orogenic belt. Science in China (Series D) 47, 300–316.

Zhang, Y., Shi, W., Li, J., Wang, R., Li, H., Dong, S., 2010. Formation Mechanism of the Dabashan Foreland Arc-Shaped Structural belt. Acta Geologica Sinica 84, 1300-1315.

How to Cite

APA

Zhang, X. and Dong, Y. (2016). The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth Sciences Research Journal, 20(4), B1-B10. https://doi.org/10.15446/esrj.v20n4.38666

ACM

[1]
Zhang, X. and Dong, Y. 2016. The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth Sciences Research Journal. 20, 4 (Oct. 2016), B1-B10. DOI:https://doi.org/10.15446/esrj.v20n4.38666.

ACS

(1)
Zhang, X.; Dong, Y. The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth sci. res. j. 2016, 20, B1-B10.

ABNT

ZHANG, X.; DONG, Y. The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth Sciences Research Journal, [S. l.], v. 20, n. 4, p. B1-B10, 2016. DOI: 10.15446/esrj.v20n4.38666. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/38666. Acesso em: 29 mar. 2024.

Chicago

Zhang, Xiaoning, and Yunpeng Dong. 2016. “The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling”. Earth Sciences Research Journal 20 (4):B1-B10. https://doi.org/10.15446/esrj.v20n4.38666.

Harvard

Zhang, X. and Dong, Y. (2016) “The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling”, Earth Sciences Research Journal, 20(4), pp. B1-B10. doi: 10.15446/esrj.v20n4.38666.

IEEE

[1]
X. Zhang and Y. Dong, “The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling”, Earth sci. res. j., vol. 20, no. 4, pp. B1-B10, Oct. 2016.

MLA

Zhang, X., and Y. Dong. “The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling”. Earth Sciences Research Journal, vol. 20, no. 4, Oct. 2016, pp. B1-B10, doi:10.15446/esrj.v20n4.38666.

Turabian

Zhang, Xiaoning, and Yunpeng Dong. “The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling”. Earth Sciences Research Journal 20, no. 4 (October 1, 2016): B1-B10. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/38666.

Vancouver

1.
Zhang X, Dong Y. The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth sci. res. j. [Internet]. 2016 Oct. 1 [cited 2024 Mar. 29];20(4):B1-B10. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/38666

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Haitao Zhang, Guangquan Xu, Hongbin Zhan, Jianbin Zheng, Minhua Wang, Mancai Liu, Shengqiang Pan, Nan Wang. (2021). Formation mechanisms of paleokarst and karst collapse columns of the Middle Cambrian-Lower Ordovician carbonates in Huainan coalfield, Northern China. Journal of Hydrology, 601, p.126634. https://doi.org/10.1016/j.jhydrol.2021.126634.

2. Song Luo, Rong Huang, Lupei Zhu, Huajian Yao. (2020). The formation of the Dabashan orocline, central China: Insights from high-resolution 3D crustal shear-wave velocity structure. Tectonophysics, 774, p.228244. https://doi.org/10.1016/j.tecto.2019.228244.

3. Penghan Song, Jiwen Teng, Xuemei Zhang, Youshan Liu, Xiang Si, Xueying Ma, Yonghu Qiao, Xingpeng Dong. (2018). Flyover Crustal Structures Beneath the Qinling Orogenic Belt and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8), p.6703. https://doi.org/10.1029/2017JB015401.

4. Marcos Antonio Klunk, Sudipta Dasgupta, Mohuli Das, Rommulo Vieira Conceição, Soyane Juceli Siqueira Xavier, Farid Chemale, Paulo Roberto Wander. (2021). Application of geochemical modelling software as a tool to predict the diagenetic reactions between the marine connate water and the salt dome in a petroleum system. Journal of South American Earth Sciences, 109, p.103272. https://doi.org/10.1016/j.jsames.2021.103272.

5. Jörg Maletz, Chuanshang Wang, Wei Kai, Xiaofeng Wang. (2021). Upper Ordovician (Hirnantian) to Lower Silurian (Telychian, Llandovery) graptolite biostratigraphy of the Tielugou section, Shennongjia anticline, Hubei Province, China. PalZ, 95(3), p.453. https://doi.org/10.1007/s12542-020-00544-5.

6. Lanpu Chen, Heng Zhang, Zhongxian Cai, Fang Hao, Yufang Xue, Weisheng Zhao. (2022). Petrographic, mineralogical and geochemical constraints on the fluid origin and multistage karstification of the Middle-Lower Ordovician carbonate reservoir, NW Tarim Basin, China. Journal of Petroleum Science and Engineering, 208, p.109561. https://doi.org/10.1016/j.petrol.2021.109561.

Dimensions

PlumX

Article abstract page views

855

Downloads

Download data is not yet available.