Published
Space-time assessing of the earthquake potential in recent years in the Eastern Anatolia region of Turkey
Evaluación espacio-temporal del potencial de terremotos en los años recientes para la región de Anatolia, en el este de Turquía
DOI:
https://doi.org/10.15446/esrj.v21n2.50889Keywords:
Eastern Anatolia region, b-value, Z-value, annual probability, recurrence time, earthquake potential (en)Región este de Anatolia, valor b, valor z, probabilidad anual, tiempo de recurrencia, potencial de terremoto (es)
Downloads
In this study, a statistical analysis is carried out to reveal the current earthquake potential in the Eastern Anatolia region of Turkey. For this purpose, a space-time assessing based on the recent changes in Gutenberg-Richter b-value, seismic quiescence Z-value, cumulative moment, annual probability and recurrence time of earthquakes is achieved. Temporal variation of b-value indicates that average b-value decreased from 1.25±0.02 between 2002 and 2010 to 1.08±0.02 between 2011 and 2015. A clear quiescence in the seismic moment in recent years may be a clue foretelling the occurrence of an intense event. Annual probability of the earthquakes between 3.5 and 4.0 magnitude levels exhibits a value equal to and larger than 30. Recurrence time of the earthquakes has a value between 2.0 and 3.0 years for magnitude level of 6.0, and a value between 6.0 and 7.0 years for magnitude level of 7.0. A significant decrease in b-value and clear quiescence anomalies in Z-value at the beginning of 2015 are observed in the several same regions. These areas cover the Central Anatolia Fault Zone, Malatya and Ovacık faults, the southeastern part of the Eastern Anatolia Fault Zone, and the junction of the Eastern Anatolia and Dead Sea Fault Zones. In these anomaly regions, a decreasing trend in b-value may be an indicator of stress increases and an increasing trend in Z-value may show the quiescence areas before the next earthquake occurrences. As a remarkable fact, these areas in the Eastern Anatolia region may be interpreted as one of the most likely locations for the major earthquakes in the future.
References
Aki, K. (1965). Maximum likelihood estimate of b in the formula logN = a - bM and its confidence limits. Bulletin of the Earthquake Research Institute, Tokyo University, 43, 237-239.
Bayrak, Y., Öztürk, S., Çınar, H., Koravos, G. Ch., & Tsapanos, T. M. (2008). Seismicity assessment for the different regions in and around Turkey based on instrumental data: Gumbel first asymptotic distribution and Gutenberg-Richter cumulative frequency law. Natural Hazards and Earth System Sciences, 8, 109-122.
Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T. M., Koravos, G. C., & Leventakis, G. A. (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology, 105, 200-210.
Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta, 14, 3-30.
Cao, A., & Gao, S. S. (2002). Temporal variation of seismic b-values beneath northeastern Japan island arc. Geophysical Research Letters, 29(9), 10.1029/2001GL013775.
Frohlich, C., & Davis, S. (1993). Teleseismic b-values: Or, much ado about 1.0. Journal of Geophysical Research, 98 (B1), 631-644.
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188.
Han, Q., Wang, L., Xu, J., Carpinteri, A., & Lacidogna, G. (2015). A robust method to estimate the b-value of the magnitude-frequency distribution of earthquakes. Chaos, Solitons & Fractals, 81, 103-110.
Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6, 687–705.
Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the micro seismograph constructed recently. Bulletin of the Earthquake Research Institute, University of Tokyo, 17, 443-478.
Joseph, J. D. R., Rao, K. B., & Anoop, M. B. (2011). A study on clustered and de-clustered world-wide earthquake data using G-R recurrence law. International Journal of Earth Sciences and Engineering, 4, 178-182.
Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (Mw = 8.3) revealed by three independent seismic catalogs. Pure Applied Geophysics, 155(2-4), 443-470
Maden, N., & Öztürk, S. (2015). Seismic b-values, bouguer gravity and heat flow data beneath Eastern Anatolia, Turkey: Tectonic implications. Survey in Geophysics, 36, 549-570.
Marcellini, A. (1995). Arrhenius behavior of aftershock sequences. Journal of Geophysical Research, 100(B4), 6463-6468.
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., S¸ Anlı, I., Seeger, H., Tealeb, A., Toksöz, M. N., & Veis, G. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3), 5695-5719.
Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, Tokyo University, 40, 831–853.
Negi, S. S., & Paul, A. (2015). Space time clustering properties of seismicity in the Garhwal-Kumaun Himalaya, India. Himalayan Geology, 36 (1), 91-101.
Olsson, R. (1999). An estimation of the maximum b-value in the Gutenberg-Richter relation. Geodynamics, 27, 547-552.
Öztürk, S., Bayrak, Y., Çınar, H., Koravos, G. Ch., & Tsapanos, T. M. (2008). A quantitative appraisal of earthquake hazard parameters computed from Gumbel I method for different regions in and around Turkey. Natural Hazards, 47, 471-495.
Öztürk, S. (2009). An application of the earthquake hazard and aftershock probability evaluation methods to Turkey earthquakes. Ph.D. Thesis, Karadeniz Technical University, Trabzon, 346 pp (in Turkish with English abstract).
Öztürk, S. (2011). Characteristics of Seismic Activity in the Western, Central and Eastern Parts of the North Anatolian Fault Zone, Turkey: Temporal and Spatial Analysis. Acta Geophysica, 59 (2), 209-238.
Öztürk, S., & Bayrak, Y. (2012). Spatial variations of precursory seismic quiescence observed in recent years in the eastern part of Turkey. Acta Geophysica, 60 (1), 92-118.
Öztürk, S. (2015a). A study on the correlations between seismotectonic b-value and Dc-value, and seismic quiescence Z-value in the Western Anatolian region of Turkey. Austrian Journal of Earth Sciences, 108 (2), 172-184.
Öztürk, S. (2015b). Fractal Dimension of Seismicity and a Modeling on the Intermediate-Term Forecasting for the Locations of Expected Strong Earthquakes: Eastern Anatolian Region, Turkey. Gümüşhane University Journal of Science and Technology Institute, 5(1), 1-23 (in Turkish with English abstract).
Polat, O., Gok, E., & Yılmaz, D. (2008). Earthquake hazard of the Aegean Extension region (West Turkey). Turkish Journal of Earth Sciences, 17, 593-614.
Reasenberg, P. A. (1985). Second-order moment of Central California seismicity, 1969-1982. Journal of Geophysical Research, 90 (B7), 5479-5495.
Rehman, K., Ali, A., Ahmed, S., Ali, W., Ali, A., & Khan, M. Y. (2015). Spatio-temporal variations of b-value in and around north Pakistan. Journal of Earth System Science, 124(7), 1445-1456.
Sayıl, N. (2005). An application of the time- and magnitude-predictable model to long-term earthquake prediction in eastern Anatolia. Journal of Seismology, 9, 367-379.
Scholz, C.H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399-415.
Singh, C. (2016). Spatial variation of seismic b-values across the NW Himalaya, Geomatics. Natural Hazards and Risk, 7(2), 522-530.
Şaroğlu, F., Emre, O., & Kuşcu, O. (1992). Active fault map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.
Tsapanos, T. M., Bayrak, Y., Cinar, H., Koravos, G.C h., Bayrak, E., Kalogirou, E. E., Tsapanou, A. V., & Vougiouka, G. E. (2014). Analysis of largest earthquakes in Turkey and its vicinity by application of the Gumbel III distribution. Acta Geophysica, 62(1) 59-82.
Tsapanos, T. M., Yadav, R. B. S., Olasoglou, S. M., & Singh, M. (2016). Assessment of the relative largest earthquake hazard level in the NW Himalaya and its adjacent region. Acta Geophysica, 64(2), 362-378.
Utsu, T. (1971). Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of Faculty of Science, Hokkaido University, Series VII (Geophysics), 3, 379-441.
Westeway, R. (1994). Present-day kinematics of the Middle East and Eastern Mediterranean. Journal of Geophysical Research, 99, 12,071–12,090.
Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (M = 6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84, 3, 900-916.
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72, 3, 373-382.
Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure Applied Geophysics, 126, 2-4, 319-332.
Yadav, R. B. S., Koravos, G. Ch., Tsapanos, T. M., & Vougiouka, G. E. (2015). A probabilistic estimate of most perceptible earthquake magnitudes in the NW Himalaya and adjoining regions. Pure Applied Geophysics 172(2), 197-212.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Serkan ÖZTÜRK. (2019). Orta Anadolu Bölgesi ve Civarındaki Depremselliğin Bölge-Zaman-Magnitüd Analizleri ve Güncel Deprem Potansiyeli. Türk Deprem Araştırma Dergisi, 1(2), p.148. https://doi.org/10.46464/tdad.644126.
2. Hamdi ALKAN, Serkan ÖZTÜRK, İsmail AKKAYA. (2023). ANALYSIS OF COULOMB STRESS TRANSFER AND EARTHQUAKE HAZARD IN THE ÇALDIRAN FAULT ZONE AND ITS ADJACENT REGION. Mühendislik Bilimleri ve Tasarım Dergisi, 11(2), p.519. https://doi.org/10.21923/jesd.1195943.
3. Vickey Sharma, Rajib Biswas. (2024). Seismic quiescence and b-value anomalies preceding the 6th February 2023 earthquake doublet (MW 7.8, MW 7.6) in Kahramanmaraş, Türkiye: a comprehensive analysis of seismic parameters along the East Anatolian Fault Zone. Acta Geophysica, https://doi.org/10.1007/s11600-024-01443-y.
4. Hamdi Alkan, Hakan Çınar, Sergey Oreshin. (2020). Lake Van (Southeastern Turkey) Experiment: Receiver Function Analyses of Lithospheric Structure from Teleseismic Observations. Pure and Applied Geophysics, 177(8), p.3891. https://doi.org/10.1007/s00024-020-02447-7.
5. Hamdi Alkan, Aydın Büyüksaraç, Özcan Bektaş, Ercan Işık. (2021). Coulomb stress change before and after 24.01.2020 Sivrice (Elazığ) Earthquake (Mw = 6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14(23) https://doi.org/10.1007/s12517-021-09080-1.
6. Julian Montejo, María Mónica Matilde Arcila Rivera, David Germán Zornosa. (2023). Integrated Seismic Catalog for Colombia. Boletín Geológico, 50(1) https://doi.org/10.32685/0120-1425/bol.geol.50.1.2023.665.
7. Serkan ÖZTÜRK. (2019). Orta Anadolu Bölgesi (Türkiye) ve civarındaki güncel deprem aktivitesinin sismik durgunluk ve magnitüd-deprem sayısı istatistiği. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 7(2), p.645. https://doi.org/10.18586/msufbd.619968.
8. Hamdi ALKAN, Mustafa TOKER, İsmail AKKAYA. (2023). Van Gölü Havzası ve Civarının Depremselliğine Genel Bir Bakış. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), p.317. https://doi.org/10.53433/yyufbed.1138320.
9. Hamdi Alkan. (2022). Crustal structure in and around the East Anatolian volcanic belt by using receiver functions stacking. Journal of African Earth Sciences, 191, p.104532. https://doi.org/10.1016/j.jafrearsci.2022.104532.
10. Caglar Ozer. (2021). 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazığ earthquake (mw = 6.8), Eastern Turkey. Natural Hazards, 108(2), p.1901. https://doi.org/10.1007/s11069-021-04761-2.
11. S. Öztürk. (2020). A study on the variations of recent seismicity in and around the Central Anatolian region of Turkey. Physics of the Earth and Planetary Interiors, 301, p.106453. https://doi.org/10.1016/j.pepi.2020.106453.
12. Nazlı Ceyla ANADOLU KILIÇ. (2021). Erzurum İli Doğa Olayları Profili ve Deprem Tehlikesi. Afet ve Risk Dergisi, 4(1), p.61. https://doi.org/10.35341/afet.896845.
13. Ufuk Aydın, Eren Pamuk, Caglar Ozer. (2022). Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey. Natural Hazards, 110(1), p.587. https://doi.org/10.1007/s11069-021-04959-4.
14. Fatih Karsli, Erdem Bayrak. (2024). Single-station microtremor surveys for site characterization: A case study in Erzurum city, eastern Turkey. Earthquake Engineering and Engineering Vibration, 23(3), p.563. https://doi.org/10.1007/s11803-024-2257-5.
15. Hamdi Alkan, Özcan Bektaş, Aydın Büyüksaraç. (2024). Coulomb Stress Analysis in Nemrut Caldera (East Anatolia, Türkiye). Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(3), p.788. https://doi.org/10.17798/bitlisfen.1491872.
16. Hamdi ALKAN, Erdem BAYRAK. (2021). Coulomb Stress Change and Size-Frequency Distribution for Lake Van Region. Bulletin Of The Mineral Research and Exploration, https://doi.org/10.19111/bulletinofmre.990666.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.