Published

2019-10-01

Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)

Comportamientos multifractales de las series temporales de temperatura observadas en las estaciones sinópticas de Benin (Africa Occidental)

DOI:

https://doi.org/10.15446/esrj.v23n4.51863

Keywords:

Benin synoptic station, scaling exponent, multi-fractal detrended fluctuation analysis, temperature and humidity. (en)
Benín, exponente de escalado, MFDFA, espectro de singularidad, temperatura, dinámica no lineal. (es)

Downloads

Authors

  • Medard Noukpo Agbazo International Chair in Physics Mathematics and Applications (CIPMA-Chair Unesco) University of Abomey-Calavi, Benin
  • Koton'Gobi Gabin Radiation Physics Laboratory (LPR) university of Abomey-Calavi, BP: 526 UAC Benin
  • Kounouhewa Basile Radiation Physics Laboratory (LPR) university of Abomey-Calavi, BP: 526 UAC Benin
  • Alamou Eric Applied Hydrology Laboratory (LHA), university of Abomey-Calavi, BP: 526 UAC Benin
  • Afouda Abel Applied Hydrology Laboratory (LHA), university of Abomey-Calavi, BP: 526 UAC Benin
  • Hounkonnou Norbert International Chair in Physics Mathematics and Applications (CIPMA-Chair Unesco) University of Abomey-Calavi, Benin BP: 526 UAC Benin

The multifractal structure of daily temperature and relative humidity is investigated in this study. Multifractal Detrended Fluctuation Analysis (MFDFA) method has been applied on data observed from 1967 to 2012 at the six synoptic stations of Benin (Cotonou, Bohicon, Parakou, Save, Natitingou and Kandi). We estimate the generalized Hurst exponent, the Renyi exponent, and the singularity spectrum from the data to quantify the multi-fractal behaviors. The results show that multi-fractality exists in both daily humidity and temperature record at Benin synoptic stations. It shows multi-fractality with the curves of h (q), τ (q) and D (q), depending on the values of q. The comparison of the multifractal properties shows that, at all the synoptic stations, the multifractal strength of the temperature is significantly different from the feature the humidity.

For the temperature, among the six study sites, the multifractal strength at Natitingou is largest (∆α = 0.6917). This means that Natitingou is the city in which the multifractal property is strongly observed for temperature. At Parakou the multifractal strength is smallest (∆α = 0.5252), meaning that Parakou is the city in which the multifractal property is weakly observed. At all synoptic stations the multifractal strength are superior to 0.5 (Δα> 0.5) indicating the degree of multifractal in temperature time series.

For the relative humidity, multifractal strength is smallest Kandi (∆α = 0.3031). This means that Kandi is the city in which the multifractal property is weakly observed. Furthermore, the multifractal strength of Parakou is largest (∆α = 0.7691) meaning that for the relative humidity, Parakou is the city in which the multifractal property is strongly observed. The geographic distribution of the multifractal strength reflects the role of climate dynamic processes on the multi-fractal behavior of humidity and the distinctiveness of physical processes in Benin.

En este estudio, el análisis de la fluctuación multifractal descendente es aplicado a diversos tiempos de temperatura cotidiana en estaciones sinópticas en Benín de 1967 a 2012. El objetivo es examinar el nivel de multifractalidad y comparar las características multifractales de temperatura en varias zonas climáticas (subecuatorial y sudanés). El análisis muestra que los diversos tiempos de temperatura diaria presentan un comportamiento multifractal, que son sensitivos a la posición geográfica de la estación y que hay una correlación positiva a largo plazo. Las condiciones climáticas y la posición geográfica de la estación sinóptica afectan la forma y la característica del espectro de la temperatura. La multifractalidad es más fuerte en la región subecuatorial que en la sudanesa. Se encontró que la mayor fuente de multifractalidad en las diversas temperaturas consiste en una función probabilística de colas pesadas. Sin embargo, correlaciones de gran autonomía también se corresponden con las características multifractales. Excepto la estación sinóptica de Kandi, el espectro inclina a la izquierda la asimetría estadística. Los hallazgos señalan la utilidad del análisis no lineal en la investigación climática debido a las interacciones complejas entre los procesos naturales. Este estudio permite comprender los mecanismos que manejan la dinámica de las series temporales de la temperatura en Benin.

References

Agbazo, M. N., Koto N’Gobi, G., Alamou, E., Kounouhewa, B. & Afouda A. (2019). Fractal Analysis of the Long-Term Memory in Precipitation over Benin (West Africa). Hindawi, Advances in Meteorology, 2019, 1353195. DOI: https://doi.org/10.1155/2019/1353195.

Boko, M. (1988). Climats et communautés rurales du Bénin. Rythmes climatiques et rythmes de développement. Thèse d’état, Paris IV, 608pp.

Bunde, A. & Havlin, S. (1995). Fractals in Science. Springer-Verlag, Heidelberg, 1995.

Burgueño, A., Lana, X., Serra, C. & Martínez, M.D. (2014). Daily extreme temperature multifractals in Catalonia (NE Spain). Physics Letters A, 378 (11), 874-885.

Dong, Q., Wang, Y. & Li, P. (2016). Multifractal behavior of an air pollutant time series and the relevance to the predictability. Environmental Pollution, 222, 444-457.

Efstathiou, M. N. & Varotsos, C. A. (2012). Intrinsic properties of Sahel precipitation anomalies and rainfall. Theoretical and Applied Climatology, 109(3-4), 627-633.

Feder, J. (1988). Fractals. Plenum Press, New York, 90pp.

Feng, T., Fu, Z. T., Deng, X. & Ma, J. Y. (2009). A brief description to different multi-fractal behaviors of daily wind speed records over China. Physics Letter A, 373, 4134-41.

IPCC. (2007). Climate Change: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2007.

Ihlen, E.A. (2012). Introduction to multifractal detrended fluctuation analysis in matlab. Frontiers in Physiology, 3, 141-159.

Jiang, L., Zhao, L. & Zhao, Z. (2017). On the difference of scaling properties for temperature and precipitation over China. Advances in Meteorology, 2017, article ID 5761275.

Jiang, L., Zhang, J., Liu, X. &, Li, F. (2016). Multifractal scaling comparison of the Air Temperature and the Surface Temperature over China. Physica A, 462, 783-792.

Jiang, L., Li, N. & Zhao, X. (2017). Scaling behaviors of precipitation over China. Theorical Applied Climatology, 128, 63-70.

Kantelhardt, J. W., Zschiegner, S. A. & Koscielny-Bunde, E. (2002). Multi-fractal detrended fluctuation analysis of nonstationary time series, Physica A, 316, 87-114.

Kavasseri, R. G. & Nagarajan, R. (2005). A multifractal description of wind speed records. Chaos, Solitons & Fractals, 24, 165-173.

Kiraly, A. & Janosi, I. M. (2005). Detrended fluctuation analysis of daily temperature records: geographic dependence over Australia. Meteorology and Atmospheric Physics, 88(3-4), 119-128.

Koscielny-Bundea, J., Kantelhardt, W., Braund, P., Bundea, A. & Havlin, S. (2006). Long term persistence and multifractality of river runoff records: Detrended fluctuation studies. Journal of Hydrology, 322, 120-137.

Kalamaras, N., Philipppopoulos, K., Deligiorgi, D., Tzanis, C. G. & Karvounis, G. (2017). Multifractal scaling properties of daily air temperature time series. Chaos, Solitons & Fractals, 98, 38-43. DOI: 10.1016/j.chaos.2017.03.003.

Kalamaras, N., Tzanis, C. G., Deligiorgi, D., Philippopoulos, K. & Koutsogiannis, I. (2019). Distribution of Air Temperature Multifractal Characteristics Over Greece. Atmosphere, 10, 45. DOI: 10.3390/atmos10020045.

Kantz, H. & Schreiber, T. (2004). Nonlinear Time Series Analysis. Second edition, Cambridge University Press: Cambridge, UK.

Kwapien, J., Oswiecimka, P. & Drozdz, S. (2005). Components of multifractality in high frequency stock returns. Physica A: Statistical Mechanics and its Applications, 350, 466-474.

Liu, Z., Xu, J. & Shi, K. (2014a). Self-organized criticality of climate change. Theoretical and Applied Climatology, 685-691.

Liu, Z., Xu, J., Chen, Z., Nie, Q. & Wei, C. (2015). Multifractal and long memory of humidity process in the Tarim River Basin. Stochastic Environmental Research and Risk Assessment, 28, 1383-1400.

Peters, O. & Neelin, J. D. (2006). Critical phenomena in atmospheric precipitation. Nature 2, 393-396.

Philippopoulos, K., Kalamaras, N., Tzanis, C. G., Deligiorgi, D. & Koutsogiannis, I. (2019). Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece. Atmosphere, 10, 336. DOI: 10.3390/atmos10060336.

Rak, R. & Zieba, P. (2015). Multifractal flexibly detrended fluctuation analysis. Acta Physica Polonica B, 46, 1925.

Shen, Z., Shi, J. & Lei, Y. (2017). Comparison of the long-range climate memory in outgoing longwave radiation over the Tibetan Plateau and the Indian Monsoon Region. Advances in Meteorology, 2017, 7637351.

Shen, C. H., Li, C. L. & Si, Y. L. (2015). A detrended cross-correlation analysis of meteorological and API data in Nanjing, China. Physica A, 419, 417-428.

Shi, K. (2014). Detrended cross-correlation analysis of temperature, rainfall, PM10 and ambient dioxins in Hong Kong. Atmospheric Environment, 97, 130-135.

Shi, K., Liu, C. Q., Ai, N. S. & Zhang, X. H. (2008). Using three methods to investigate time–scaling properties in air pollution indexes time series. Nonlinear Analysis: Real World Applications, 9, 693-707. DOI: https://doi.org/10.1016/j.nonrwa.2007.06.003

Shimizu, Y., Thurner, S. & Ehrenberger, K. (2002). Multifractal spectra as a measure of complexity in human posture. Fractals, 10,103-116.

Teiler, J., Galdrikian, B., Longtin, A., Eubank, S. & Farmer, D. J. (1992). Using surrogate data to detect nonlinearity in time series. In: M. Casdagli and S. Eubank (EDS). Nonlinear Model, Forecast, pp. 163–188, Addison-Wesley, Redwood City, CA, USA.

Telesca, L., Balasco, M., Colangelo, G., Lapenna, V. & Macchiato, M. (2004). Investigating the multifractal properties of geoelectrical signals measured in southern Italy. Physics and Chemistry of the Earth, Parts A/B/C, 29(4-9), 295-303.

Vassoler, R. T. & Zebende, G. F. (2012). DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A, 391, 2438-2443.

Wan, S., Liu, Q., Zou, Z. & He, W. (2016). Nonlinearity and fractal properties of climate change during the past 500 years in northwestern China. Discrete Dynamics in Nature and Society, 2016, 4269431.

Wu, L., Chen, L., Ding, Y. & Zhao, T. (2018). Testing for the source of multifractality in water level records. Physica A, 508, 824-839.

Xue, Y., Pan, W., Lu, W.-Z. & He, H. D. (2015). Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Science of The Total Environment, 532, 744-751

How to Cite

APA

Agbazo, M. N., Gabin, K., Basile, K., Eric, A., Abel, A. and Norbert, H. (2019). Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa). Earth Sciences Research Journal, 23(4), 365–370. https://doi.org/10.15446/esrj.v23n4.51863

ACM

[1]
Agbazo, M.N., Gabin, K., Basile, K., Eric, A., Abel, A. and Norbert, H. 2019. Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa). Earth Sciences Research Journal. 23, 4 (Oct. 2019), 365–370. DOI:https://doi.org/10.15446/esrj.v23n4.51863.

ACS

(1)
Agbazo, M. N.; Gabin, K.; Basile, K.; Eric, A.; Abel, A.; Norbert, H. Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa). Earth sci. res. j. 2019, 23, 365-370.

ABNT

AGBAZO, M. N.; GABIN, K.; BASILE, K.; ERIC, A.; ABEL, A.; NORBERT, H. Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa). Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 365–370, 2019. DOI: 10.15446/esrj.v23n4.51863. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/51863. Acesso em: 14 jul. 2024.

Chicago

Agbazo, Medard Noukpo, Koton’Gobi Gabin, Kounouhewa Basile, Alamou Eric, Afouda Abel, and Hounkonnou Norbert. 2019. “Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)”. Earth Sciences Research Journal 23 (4):365-70. https://doi.org/10.15446/esrj.v23n4.51863.

Harvard

Agbazo, M. N., Gabin, K., Basile, K., Eric, A., Abel, A. and Norbert, H. (2019) “Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)”, Earth Sciences Research Journal, 23(4), pp. 365–370. doi: 10.15446/esrj.v23n4.51863.

IEEE

[1]
M. N. Agbazo, K. Gabin, K. Basile, A. Eric, A. Abel, and H. Norbert, “Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)”, Earth sci. res. j., vol. 23, no. 4, pp. 365–370, Oct. 2019.

MLA

Agbazo, M. N., K. Gabin, K. Basile, A. Eric, A. Abel, and H. Norbert. “Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 365-70, doi:10.15446/esrj.v23n4.51863.

Turabian

Agbazo, Medard Noukpo, Koton’Gobi Gabin, Kounouhewa Basile, Alamou Eric, Afouda Abel, and Hounkonnou Norbert. “Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa)”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 365–370. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/51863.

Vancouver

1.
Agbazo MN, Gabin K, Basile K, Eric A, Abel A, Norbert H. Multi-fractal Behaviors of long term daily relative humidity and temperature observed over Benin synoptic stations (West Africa). Earth sci. res. j. [Internet]. 2019 Oct. 1 [cited 2024 Jul. 14];23(4):365-70. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/51863

Download Citation

CrossRef Cited-by

CrossRef citations6

1. A.O. Adelakun, F.M. Adelakun. (2024). Mathematical modeling and seasonal solar radiation variability in Nigeria’s geo-political zones: A recurrence and multifractal analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 261, p.106290. https://doi.org/10.1016/j.jastp.2024.106290.

2. Suneet Dwivedi, Shweta Chaturvedi. (2023). Multifractal analysis of malaria cases in India in a global warming scenario. Journal of Water and Climate Change, 14(5), p.1466. https://doi.org/10.2166/wcc.2023.383.

3. Humberto Millán, Idalberto Macías, Nathalí Valderá. (2022). Multifractality of the standardized precipitation index: influence of pan evaporation and virtual temperature-based potential evapotranspiration. Meteorology and Atmospheric Physics, 134(3) https://doi.org/10.1007/s00703-022-00894-6.

4. Joshua Akinsusi, Samuel Ogunjo, Ibiyinka Fuwape. (2022). Nonlinear dynamics and multifractal analysis of minimum–maximum temperature and solar radiation over Lagos State, Nigeria. Acta Geophysica, 70(5), p.2171. https://doi.org/10.1007/s11600-022-00879-4.

5. Farhang Rahmani, Mohammad Hadi Fattahi. (2023). Climate change-induced influences on the nonlinear dynamic patterns of precipitation and temperatures (case study: Central England). Theoretical and Applied Climatology, 152(3-4), p.1147. https://doi.org/10.1007/s00704-023-04424-1.

6. Grisel Cavieres, Francisco Bozinovic, José Miguel Bogdanovich, Daniela S. Rivera. (2023). Impact of prolonged chronic social isolation stress on behavior and multifractal complexity of metabolic rate in Octodon degus. Frontiers in Behavioral Neuroscience, 17 https://doi.org/10.3389/fnbeh.2023.1239157.

Dimensions

PlumX

Article abstract page views

391

Downloads

Download data is not yet available.