Published

2016-10-01

Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay

DOI:

https://doi.org/10.15446/esrj.v20n4.54400

Keywords:

Accumulated plastic strain, dynamic triaxial tests, dynamic strength, remolded red clay, Fuerza plástica acumulada, pruebas triaxiales dinámicas, fuerza dinámica, arcilla roja reestructurada. (en)

Downloads

Authors

  • Jian Li
  • Shang-Xiong Chen
  • Ling-Fa Jiang

The dynamic properties of subgrade materials are critical factors affecting stability within the traffic engineering discipline. Remolded red clays are frequently used as subgrade filling materials, however, to date, a paucity of data exist on to the dynamic properties of this material. Accordingly, a large number of dynamic triaxial tests under cyclic loads were carried out to quantify the suitability of remolded red clay as subgrade filling. Several potentially influencing dynamic factors were considered, including dynamic stress, vibration frequency, consolidation confining pressure, consolidation ratio and compactness. Plastic strain and dynamic strength curves of remolded red clays under varying dynamic loads and load histories have been developed, in addition to the inclusion of those influencing factors. Test results show that within the range not exceeding the inherent strength of the test samples, increases soil compactness, confining pressure, and vibration frequency serves to enhance overall dynamic power in concurrence with retarding the development of accumulated plastic strain. Conversely, an improvement in the amplitude of the dynamic stress and consolidation ratio was shown to cause a decrease in dynamic strength and acceleration in the development of accumulated plastic strain. An empirical equation relating critical dynamic strength and load histories of remolded red clay has been developed for the provision of fundamental reference data for future studies.

 

Pruebas sobre la influencia de la carga dinámica y la historia de carga en las propiedades dinámicas de arcilla roja reestructurada

 

Resumen

Las propiedades dinámicas de los materiales de base son factores cruciales que afectan la estabilidad en la ingeniería de tráfico. La arcilla roja reestructurada se utiliza frecuentemente como material de relleno de bases, sin embargo, hasta la fecha, existe una escasez de información sobre las propiedades dinámicas de este material. De acuerdo con esto, se realizó un gran número de pruebas triaxiales dinámicas bajo cargas cíclicas para cuantificar la pertinencia de la arcilla roja reestructurada como material de relleno en bases. Se consideraron varios factores dinámicos que podrían ser determinantes, como la fuerza dinámica, la frecuencia de vibración, la presión de confinamiento, el índice de consolidación y la compactibilidad. Se desarrollaron las curvas de fuerza plástica y dinámica de arcilla roja reestructurada con varias cargas dinámicas e historia de cargas, además de la inclusión de los factores determinantes. El resultado de las pruebas muestra que dentro del rango de la fuerza inherente a las muestras de estudio, el incremento de la compactibilidad del suelo, la presión de confinamiento y la frecuencia de vibración sirven para mejorar, en general, el poder dinámico al tiempo que retrasa el desarrollo de la fuerza plástica. Al contrario, el mejoramiento de la amplitud de la fuerza dinámica y el índice de consolidación muestra una reducción en la fuerza dinámica y una aceleración en el desarrollo de la fuerza plástica acumulada. Finalmente, se desarrolló una ecuación empírica que relaciona la fuerza dinámica crítica y las cargas históricas de arcilla roja reestructurada con el fin de proveer información de referencia para estudios futuros.

References

Bai, W., Kong, L., Guo, A. G., & Wan, Z. (2010). Research on distribution characteristics of bearing capacities and deformation parameters of laterite ground. Rock and Soil Mechanics 31(S2), 164-169.

Bai, W. & Wan, Z. (2010). Extension comprehensive prediction method for evaluation of subgrade bearing capacity of red clay area. Highway, 7, 85-90.

Chen, G. H., Sun, X. Z., Hu, H. Y. & Hu Y. W. (2015). Research on modeling and algorithm of supply chain’s reliability based on CCFSM. Journal of Coastal Research, Special Issue No.73, 99-103. DOi: http://dx.doi.org/10.2112/SI73-018.1

Duncan, J. M. & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 103(6), 517-533.

Editorial of Engineering Geology Manual. (2007). Engineering Geology Manual. Architecture and Building Press, Beijing, China.

Gu, C., Wang, J., Cai, Y. Q., Yang, Z., & Gao, Y. (2012). Undrained cyclic triaxial behavior of saturated clays under variable confining pressure. Soil Dynamics and Earthquake Engineering, 40, 118-128. DOI: http://dx.doi.org/10.1016/j.soildyn.2012.03.011

He, C. R. (1998). Dynamic triaxial test on elongation and tensile characteristics of soil. Journal of Sichuan Union University (Engineering Science Edition), 2(4), 49-52.

Heath, D. L., Waters, J. M., Shenton, M. J., & Sparrow, R. W. (1972). Design of conventional rail track foundations. Proceedings of the Institution of Civil Engineers, 51(2), 251-267. DOI: http://dx.doi.org/10.1680/iicep.1972.5952

Kang, J. W., Gan, Y., Wang, H. L., Huang, L. H., Wu, X. G., & Peng, S. M. (2010). Original stamping foundation treatment of red clay of new airport in Kunming. Chinese Journal of Geotechnical Engineering, 32(S2), 469-500.

Kaynia, A. M., Madshus, C. & Zackrisson, P. (2000). Ground vibration from high-speed trains: prediction and countermeasure. Journal of Geotechnical Geoenvironmental Engineering, 126(6), 531-537. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2000)126:6(531)#sthash.Sn1MdJa4.dpuf

Kong, L. W. & Luo, H. (1993). Effect of the conversion in form of free iron oxide on the engineering property of the red clay. Rock and Soil Mechanics 14(4), 25-39.

Kong, L. W., Luo, H. X., & Yuan, J. X. (1995). Preliminary study on the effective cementation characteristics of the red clay. Chinese Journal of Geotechnical Engineering, 17(5), 42-47.

Li, J. (2013). On dynamic response of the red clay foundation under high-speed train loading. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China, 36-39.

Li, Y. (2010). Study on dynamic behaviors of unsaturated loess in different vibration frequencies. Northwest A&F University, Yangling, China, 45-49.

Li, J., Chen, S. X., & Jiang, L. F. (2013). Resonant column test on dynamic shear modulus and damping ratio of the remolded red clay and its law analysis. In: Xie, L. (Eds.) Modeling and Computation in Engineering II. 129-140. DOI: 10.1201/b14896-21

Li, J., Chen, S., & Jiang, L. (2015). Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-term Cyclic Loads: Laboratory Test Results. Polish Maritime Research, 22, Special Issue S1 (86), 89-94.

Liang, B. & Mo, K. (2010). Research on remodelling red clay's shear strength with different moisture ratio. Shanxi Architecture, 36(04), 101-102.

Lin, Q. (2011). Experimental investigation on dynamic behavior of soils affected by vibration frequencies. Shanghai Jiao Tong University, Shanghai, China, 59-61.

Liu, X. H. (2010). Research on dynamic stability of red clay subgrade under ballastless track of high-speed railway. Unpublished PhD thesis, Central South University, Changsha, China, 25-27.

Long, W. X., Chen, K. S., Xiao, T., & Peng, X. P. (2009). Research of general triaxial test for unsaturated red clay. Rock and Soil Mechanics, 30(S2), 28-33.

Lunne, T., Berre, T., Andersen, K. H., Strandvik, S., & Sjursen, M. (2006). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Canadian Geotechnical Journal, 43, 726-750.

Peng, W., Lin, Z., Wang, L. & Wu, J. (2015). Effect of Weakly Alkaline Salt Pretreatment on Bio-Boards for Medicine Safety. Journal of Pure and Applied Microbiology, 9(3), 1913-1917.

Xie, D. Y. (1986). Soil Dynamics. Xi'an Jiaotong University Press, Xi'an, China, 69-73.

Yang, S. & Lu, T. H. (2011). Research on unventilated-undrained triaxial shear test of red cohesive soil. Rock and Soil Mechanics, 32(S1), 356-359.

Zhang, J. H. (1991). Research on pore water pressure strength and liquefaction properties of unsaturated sandy soil. Chengdu University of Science and Technology, Chengdu, China, 36-38.

Zhang, J. L., Jiang, Z. G., & Yang, G. (2011). Experimental study on mechanical behaviors of polypropylene fiber reinforced clay. Chinese Journal of Geotechnical Engineering, 33(1), 420-425.

Zhang, R., He, C. R., Fei, W. P., & Gao, M. Z. (2006). Effect of consolidation stress ratio on dynamic strength and dynamic pore water pressure of soil. Chinese Journal of Geotechnical Engineering, 28(1), 101-105.

Zhou, J. (1998). Research on properties of the saturated soft clay under cyclic loads. Zhejiang University, Hangzhou, China, 26-29.

Zhou, J., & Gong, X. N. (2001). Strain degradation of saturated clay under cyclic loading. Canadian Geotechnical Journal, 38(1), 208-212. DOI: 10.1139/cgj-38-1-208

How to Cite

APA

Li, J., Chen, S.-X. and Jiang, L.-F. (2016). Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay. Earth Sciences Research Journal, 20(4), G1-G8. https://doi.org/10.15446/esrj.v20n4.54400

ACM

[1]
Li, J., Chen, S.-X. and Jiang, L.-F. 2016. Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay. Earth Sciences Research Journal. 20, 4 (Oct. 2016), G1-G8. DOI:https://doi.org/10.15446/esrj.v20n4.54400.

ACS

(1)
Li, J.; Chen, S.-X.; Jiang, L.-F. Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay. Earth sci. res. j. 2016, 20, G1-G8.

ABNT

LI, J.; CHEN, S.-X.; JIANG, L.-F. Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay. Earth Sciences Research Journal, [S. l.], v. 20, n. 4, p. G1-G8, 2016. DOI: 10.15446/esrj.v20n4.54400. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/54400. Acesso em: 25 apr. 2024.

Chicago

Li, Jian, Shang-Xiong Chen, and Ling-Fa Jiang. 2016. “Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay”. Earth Sciences Research Journal 20 (4):G1-G8. https://doi.org/10.15446/esrj.v20n4.54400.

Harvard

Li, J., Chen, S.-X. and Jiang, L.-F. (2016) “Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay”, Earth Sciences Research Journal, 20(4), pp. G1-G8. doi: 10.15446/esrj.v20n4.54400.

IEEE

[1]
J. Li, S.-X. Chen, and L.-F. Jiang, “Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay”, Earth sci. res. j., vol. 20, no. 4, pp. G1-G8, Oct. 2016.

MLA

Li, J., S.-X. Chen, and L.-F. Jiang. “Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay”. Earth Sciences Research Journal, vol. 20, no. 4, Oct. 2016, pp. G1-G8, doi:10.15446/esrj.v20n4.54400.

Turabian

Li, Jian, Shang-Xiong Chen, and Ling-Fa Jiang. “Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay”. Earth Sciences Research Journal 20, no. 4 (October 1, 2016): G1-G8. Accessed April 25, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/54400.

Vancouver

1.
Li J, Chen S-X, Jiang L-F. Test study on the influences of dynamic stress and load history to the dynamic properties of the remolded red clay. Earth sci. res. j. [Internet]. 2016 Oct. 1 [cited 2024 Apr. 25];20(4):G1-G8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/54400

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Changbin Yan, Xiao Xu, Lei Huang. (2018). Identifying the Impact Factors of the Dynamic Strength of Mudded Intercalations during Cyclic Loading. Advances in Civil Engineering, 2018, p.1. https://doi.org/10.1155/2018/5805294.

2. Qishu Zhang, Wuming Leng, Fang Xu, Qi Yang, Xi Ai. (2019). ADDITIONAL STRESS IN SOIL EMBANKMENTS SUBJECTED TO A NEW PRESTRESSED REINFORCEMENT DEVICE. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25(7), p.700. https://doi.org/10.3846/jcem.2019.10532.

3. Tigistu Abu Arficho, Argaw Asha Ashango, Jian Ji. (2023). Experimental Study of Awash Soil under Static and Cyclic Shear Loading. Advances in Civil Engineering, 2023, p.1. https://doi.org/10.1155/2023/5878290.

Dimensions

PlumX

Article abstract page views

684

Downloads

Download data is not yet available.