Published

2016-10-01

Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques

DOI:

https://doi.org/10.15446/esrj.v20n4.54555

Keywords:

Hydrogeochemistry, Multivariate analysis, PCA, CA, Udayagiri, Hidrogeoquímica, análisis multivariado, análisis de componentes principales, análisis de grupo, Udayagiri. (en)

Downloads

Authors

  • Arveti Nagaraju Sri Venkateswara Univeristy
  • Arveti Thejaswi
  • Yenamala Sreedhar

Hydrogeochemical studies were carried out in and around Udayagiri area of Andhra Pradesh in order to assess the chemistry of the groundwater and to identify the dominant hydrogeochemical processes and mechanisms responsible for the evolution of the chemical composition of the groundwater. Descriptive statistics, correlation matrices, principal component analysis (PCA), together with cluster analysis (CA) were used to gain an understanding of the hydrogeochemical processes in the study area. PCA has identified 4 main processes influencing the groundwater chemistry viz., mineral precipitation and dissolution, seawater intrusion, cation exchange, and carbonate balance. Further, three clusters C1, C2 and C3 were obtained. Samples from C1 contain high level of Cl− and may be due to the intensive evaporation and contamination from landfill leachate. Most of the samples from C2 are located closer to the sea and the high level of Na+ +K+ in these samples may be attributed to seawater intrusion. The geochemistry of water samples in C3 are more likely to originate from rock weathering. This has been supported by Gibbs diagram. The groundwater geochemistry in the study area is mostly of natural origin, but is influenced to some degree by human activity. 

 

Evaluación de la calidad del agua subterránea a través de técnicas estadísticas multivariadas en el área Udayagiri, distrito Nellore, Andhra Pradesh, en el sur de India


Resumen

Se realizaron estudios hidrogeoquímicos en y alrededor del área Udayagiri de Andhra Pradesh para evaluar la química del agua subterránea e identificar los procesos hidrogeoquímicos dominantes y los mecanismos responsables de la evolución en la composición química del agua subterránea. Se utilizaron estadísticas descriptivas, matrices de correlación, análisis de componentes principales, al igual que análisis de grupos, para obtener y entender los procesos hidrogeoquímicos en el área de estudio. Los análisis de componentes principales identificaron cuatro procesos determinantes que influenciaron la química del agua subterránea, estos son, la precipitación y disolución de minerales, l intrusión de agua marina, el intercambio de cationes y el equilibrio de carbonatos. De esta forma se obtuvieron tres grupos, C1, C2, y C3. Las muestras del grupo C1 contienen un alto nivel de Cl- , lo que podría deberse a la intensa evaporación y contaminación de los lixiviados de rellenos sanitarios. Muchas de las muestras del grupo C2 se ubican cerca del mar y el alto nivel de Na++K+ podría atriburise a la intrusión de agua marina. La geoquímica de las muestras de agua en el grupo C3 probablemente se desprende de la meteorización de rocas. El diagrama de Gibbs valida estos resultados. La geoquímica del agua subterránea en el área de estudio es principalmente de origen natural pero también está influenciado por la actividad humana en algún grado.

 

 


References

APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public Health Association, DC.

Bhattacharya, T., Chakraborty, S. & Tuck, N. (2012). Physico chemical Characterization of ground water of Anand district, Gujarat, India. Research Journal of Environmental Sciences, 1(1), 28-33.

Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater-a case study: Ain Azel plain (Algeria). Geoderma, 159, 390-398.

Cloutier, V., Lefebvre, R., Savard M. M., Bourque, É., & Therrien, R. (2006). Hydrogeochemistry and groundwater origin of the Basses–Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeology Journal, 14, 573–590

Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Hydrogeology Journal, 353, 294–313.

Edmunds, W.M., Shand, P., Hart, P., & Ward, R. S. (2003). The natural (baseline) quality of groundwater: a UK pilot study. Science of the Total Environment, 310, 25-35.

Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

Gnanachandrasamy, G., Ramkumar, T., Venkatramanan, S., Vasudevan, S., Chung, S. Y & Bagyaraj, M.(2015). Accessing groundwater quality in lower part of Nagapattinam District, Southern India: using hydrogeochemistry and GIS interpolation techniques. Applied Water Science, 5(1), 39-55.

Gupta, D. P., & Saharan, S. J. P. (2009). Physiochemical analysis of ground water of selected area of Kaithal city (Haryana) India. Researcher, 1(2), 1-5.

Hussain, M., Ahmed, S. M., & Abderrahman, W. (2008). Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. Journal of Environmental Management, 86, 297-307.

Li, P. Y., Qian, H., & Wu, J. H. (2011). Hydrochemical Characteristics and Evolution Laws of Drinking Groundwater in Pengyang County, Ningxia, Northwest China. E-Journal of Chemistry, 8(2), 565-575. DOI: 10.1155/2011/472085.

Li, P., Qian, H., Wu, J., Zhang, Y., & Zhang, H. (2013). Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 32, 195–206. DOI: 10.1007/s10230-013-0234-8.

Li, P., Wu, J., & Qian, H. (2014a). Hydrogeochemistry and Quality Assessment of Shallow Groundwater in the Southern Part of the Yellow River Alluvial Plain (Zhongwei Section), Northwest China. Earth Sciences Research Journal, 18(1), 27−38.

Li, P., Wu, J., Qian, H., Lyu, X., & Liu, H. (2014b). Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environmental Geochemistry and Health, 36, 693–712. DOI:10.1007/s10653-013-9590-3.

Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New York.

Nagaraju, A., Suresh, S., Killham, K. & Hudson-Edwards, K. (2006). Hydrogeochemistry of waters of Mangampeta a barite mining area, Cuddapah basin, Andhra Pradesh, India. Turkish Journal of Engineering and Environmental Sciences, 30, 203-219.

Nagaraju, A., Sunil Kumar, K., Thejaswi, A., & Sharifi, Z. (2014a).Statistical analysis of the hydrogeochemical evolution of groundwater in the Rangampeta area, Chittoor District, Andhra Pradesh, South India. American Journal of Water Resources, 2(3), 63-70.

Nagaraju, A., Sreedhar, Y., Sunil Kumar, K., Thejaswi, A., & Sharifi, Z. (2014b). Assessment of groundwater quality and evolution of hydrochemical facies around Tummalapalle area, Cuddapah District, Andhra Pradesh, South India. International Journal of Environmental Analytical Chemistry, 1, 1-6.

Nagaraju, A., Sunil Kumar, K., & Thejaswi, A. (2014c). Assessment of groundwater quality for irrigation: a case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Applied Water Science, 4, 385-396.

Nagaraju, A., Balaji, E., Thejaswi, A. & Sun, L. (2015). Quality evaluation of groundwater in Mulakalacheruvu area, Chittoor district, Andhra Pradesh, South India based on hydrogeochemistry. Fresenius Environmental Bulletin, 24, 4496-4503.

Nagaraju, A., Thejaswi, A., & Sun, L. (2016a). Statistical analysis of high fluoride groundwater hydrochemistry in Southern India: Quality assessment and Implications for source of fluoride. Environmental Engineering Science, 33: 471-477.

Nagaraju, A., Sharifi, Z., & Balaji, E. (2016b). Statistical and analytical evaluation of groundwater quality of Tirupati Area, Chittoor District, Andhra Pradesh, South India. Journal of the Geological Society of India, 88, 222-234.

Nagaraju, A., Balaji, E, & Thejaswi, A. (2016c). Hydrogeochemical evaluation of groundwater in certain parts of Vinukonda area, Guntur District, Andhra Pradesh, South India. Fresenius Environmental Bulletin, 25, 1519-1532.

Panagopoulos, A., Kassapi, K. A., Arampatzis, G., Perleros, B., Drakopoulou, S., Tziritis, E., Chrysafi A. A. & Vrouhakis, I. (2012) Assessment of chemical and quantitative status of groundwater systems in Pinios hydrological basin - Greece. Proceedings of International Conference Protection and restoration of the environment XI, Thessaloniki, pp. 511-517.

Razmkhah, H., Abrishamchi, A., & Torkian, A. (2010). Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). Journal of Environmental Management, 91, 852-860.

Subramani, T., Rajmohan, N., & Elango, L. (2009). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment. DOI:10.1007/s10661-009-0781-4.

Suresh, S., Dinakar, N., Prasad, T. N. V. K. V., Nagajyothi, P. C., Damodaram, T, & Nagaraju, A. (2007). Effects of barite mine on groundwater quality in Andhra Pradesh, India. Mine Water and the Environment, 26, 119-123.

Tripathi, A. K., Mishra U.K., Mishra Ajay., Dubey, P. (2012). Assessment of groundwater quality Gurh Tehseel, Rewa District Madhya Pradesh, India. International Journal of Scientific and Engineering Research, 3(9), 1-12.

Vasanthavigar, M., Srinivasamoorthy, K., & Prasanna. M. V. (2012). Evaluation of ground water suitability for domestic, irrigational, and industrial purposes: a case study from Thirumanimuttar river basin, Tamilnadu, India. Journal of Environmental Monitoring Assessment, 184: 405 - 420.

Venkateswara Rao, B. (2011). Physico-chemical analysis of selected groundwater samples of Vijayawada rural and urban in Krishna district, Andhra Pradesh, India. International Journal Environmental Sciences, 2(2), 710- 714.

Voutsis, N., Kelepertzis, E., Tziritis, E., & Kelepertsis, A. (2015). Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159, 79–92.

Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7, 3973–3982. DOI: 10.1007/s12517-013-1057-4

Wu, J., Li, P., & Qian, H. (2015). Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environmental Earth Sciences, 73:8575–8588.

How to Cite

APA

Nagaraju, A., Thejaswi, A. and Sreedhar, Y. (2016). Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques. Earth Sciences Research Journal, 20(4), E1-E7. https://doi.org/10.15446/esrj.v20n4.54555

ACM

[1]
Nagaraju, A., Thejaswi, A. and Sreedhar, Y. 2016. Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques. Earth Sciences Research Journal. 20, 4 (Oct. 2016), E1-E7. DOI:https://doi.org/10.15446/esrj.v20n4.54555.

ACS

(1)
Nagaraju, A.; Thejaswi, A.; Sreedhar, Y. Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques. Earth sci. res. j. 2016, 20, E1-E7.

ABNT

NAGARAJU, A.; THEJASWI, A.; SREEDHAR, Y. Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques. Earth Sciences Research Journal, [S. l.], v. 20, n. 4, p. E1-E7, 2016. DOI: 10.15446/esrj.v20n4.54555. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/54555. Acesso em: 6 dec. 2024.

Chicago

Nagaraju, Arveti, Arveti Thejaswi, and Yenamala Sreedhar. 2016. “Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques”. Earth Sciences Research Journal 20 (4):E1-E7. https://doi.org/10.15446/esrj.v20n4.54555.

Harvard

Nagaraju, A., Thejaswi, A. and Sreedhar, Y. (2016) “Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques”, Earth Sciences Research Journal, 20(4), pp. E1-E7. doi: 10.15446/esrj.v20n4.54555.

IEEE

[1]
A. Nagaraju, A. Thejaswi, and Y. Sreedhar, “Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques”, Earth sci. res. j., vol. 20, no. 4, pp. E1-E7, Oct. 2016.

MLA

Nagaraju, A., A. Thejaswi, and Y. Sreedhar. “Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques”. Earth Sciences Research Journal, vol. 20, no. 4, Oct. 2016, pp. E1-E7, doi:10.15446/esrj.v20n4.54555.

Turabian

Nagaraju, Arveti, Arveti Thejaswi, and Yenamala Sreedhar. “Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques”. Earth Sciences Research Journal 20, no. 4 (October 1, 2016): E1-E7. Accessed December 6, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/54555.

Vancouver

1.
Nagaraju A, Thejaswi A, Sreedhar Y. Assessment of Groundwater Quality of Udayagiri area, Nellore District, Andhra Pradesh, South India Using Multivariate Statistical Techniques. Earth sci. res. j. [Internet]. 2016 Oct. 1 [cited 2024 Dec. 6];20(4):E1-E7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/54555

Download Citation

CrossRef Cited-by

CrossRef citations26

1. Uday Kumar Devalla, Vikash Kumar, Y. B. Katpatal. (2022). Groundwater and Water Quality. Water Science and Technology Library. 119, p.399. https://doi.org/10.1007/978-3-031-09551-1_33.

2. Dipankar Ruidas, Subodh Chandra Pal, Asish Saha, Sudipto Mandal, Aznarul Islam, Abu Reza Md. Towfiqul Islam, Edris Alam. (2024). Ecosystem richness degradation assessment from elevated hydro-chemical properties of Chilka Lake, India. Hydrological Sciences Journal, 69(3), p.377. https://doi.org/10.1080/02626667.2024.2314655.

3. Naseem Akhtar, Muhammad Izzuddin Syakir Ishak, Mardiana Idayu Ahmad, Khalid Umar, Mohamad Shaiful Md Yusuff, Mohd Talha Anees, Abdul Qadir, Yazan Khalaf Ali Almanasir. (2021). Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water, 13(7), p.905. https://doi.org/10.3390/w13070905.

4. Sultan Ayoub Meo. (2024). Environmental Pollution and Type 2 Diabetes Mellitus. , p.1. https://doi.org/10.1016/B978-0-443-21646-6.00001-0.

5. C. K. V. Chaithanya Reddy, Veeraswamy Golla, Pradeep Kumar Badapalli, N. B. Y. Reddy. (2022). Evaluation of groundwater contamination for fluoride and nitrate in Nellore Urban Province, Southern India: a special emphasis on human health risk assessment (HHRA). Applied Water Science, 12(3) https://doi.org/10.1007/s13201-021-01537-8.

6. Katalin Bodor, Bernadett Tokos, Zsolt Bodor, Ágnes Keresztesi, Szilvia László, George Garbacea, Róbert Szép. (2023). Hydro-geochemical characterization of the main European mineral water brands. Journal of Food Composition and Analysis, 122, p.105438. https://doi.org/10.1016/j.jfca.2023.105438.

7. Rajkumar Birendrakumar Singh, Ghanashyam Singh Yurembam, Deepak Jhajharia, B. C. Kusre. (2024). Water quality assessment of Loktak Lake, Manipur using Landsat 9 imagery. Water Practice & Technology, 19(7), p.2613. https://doi.org/10.2166/wpt.2024.154.

8. Dereje Gidafie, Dessie Nedaw, Tilahun Azagegn, Bekele Abebe, Alper Baba. (2024). Evaluation of the source and mechanisms of groundwater recharge for the southern sections of the western Afar rift margin and associated rift floor. Journal of Hydrology: Regional Studies, 56, p.102037. https://doi.org/10.1016/j.ejrh.2024.102037.

9. Ankun Luo, Guangcai Wang, Shuning Dong, Hao Wang, Zheming Shi, Zhongkui Ji, Jiankun Xue. (2022). Effect of Large-Scale Mining Drainage on Groundwater Hydrogeochemical Evolution in Semi-Arid and Arid Regions. Frontiers in Environmental Science, 10 https://doi.org/10.3389/fenvs.2022.926866.

10. Chinmoy Ranjan Das, Subhasish Das, Souvik Panda. (2022). Groundwater quality monitoring by correlation, regression and hierarchical clustering analyses using WQI and PAST tools. Groundwater for Sustainable Development, 16, p.100708. https://doi.org/10.1016/j.gsd.2021.100708.

11. Naseem Akhtar, Muhammad Izzuddin Syakir Ishak, Showkat Ahmad Bhawani, Khalid Umar. (2021). Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water, 13(19), p.2660. https://doi.org/10.3390/w13192660.

12. Gajendran Chellaiah, Ramamoorthy Ayyamperumal, Basker Rengaraj, Gnanachandrasamy Gopalakrishnan, Venkatramanan Senapathi, Zhang Chengjun, Xiaozhong Huang. (2023). Combined tactic of seasonal changes and ionic processes of groundwater in Tamirabarani river basin, India. Environmental Science and Pollution Research, 31(41), p.54262. https://doi.org/10.1007/s11356-023-26449-9.

13. Smrutisikha Mohanty, Md. Wasim, Prem C. Pandey, Prashant K. Srivastava. (2024). Geographical Information Science. , p.231. https://doi.org/10.1016/B978-0-443-13605-4.00019-9.

14. Thangavelu Arumugam, Sapna Kinattinkara, Socia Kannithottathil, Sampathkumar Velusamy, Manoj Krishna, Manoj Shanmugamoorthy, Vivek Sivakumar, Kaveripalayam Vengatachalam Boobalakrishnan. (2023). Comparative assessment of groundwater quality indices of Kannur District, Kerala, India using multivariate statistical approaches and GIS. Environmental Monitoring and Assessment, 195(1) https://doi.org/10.1007/s10661-022-10538-2.

15. Adam Khalifa Mohamed, Dan Liu, Kai Song, Mohamed A. A. Mohamed, Elsiddig Aldaw, Basheer A. Elubid. (2019). Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China. International Journal of Environmental Research and Public Health, 16(3), p.302. https://doi.org/10.3390/ijerph16030302.

16. Kushan D. Siriwardhana, Dimantha I. Jayaneththi, Ruchiru D. Herath, Randika K. Makumbura, Hemantha Jayasinghe, Miyuru B. Gunathilake, Hazi Md. Azamathulla, Kiran Tota-Maharaj, Upaka Rathnayake. (2023). A Simplified Equation for Calculating the Water Quality Index (WQI), Kalu River, Sri Lanka. Sustainability, 15(15), p.12012. https://doi.org/10.3390/su151512012.

17. Girma Asefa Bogale, Zelalem Bekeko Erena. (2022). Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. Journal of Applied Animal Research, 50(1), p.471. https://doi.org/10.1080/09712119.2022.2103563.

18. Olukayode D. Akinyemi, Sulaiman Kazeem, Olufunmilayo Alatise, Babatunde Bada, Funmilayo Alayaki. (2023). A novel method to estimate the aggregate pollution index in a typical limestone mining and cement producing environment. Environmental Monitoring and Assessment, 195(8) https://doi.org/10.1007/s10661-023-11581-3.

19. Sunil Kumar Sharma. (2022). Water Quality, Assessment and Management in India. Earth and Environmental Sciences Library. , p.113. https://doi.org/10.1007/978-3-030-95687-5_6.

20. Rakesh Roshan Gantayat, Madondo T. Patience, Natarajan Rajmohan, Vetrimurugan Elumalai. (2023). Recent Advances in Environmental Sustainability. Environmental Earth Sciences. , p.113. https://doi.org/10.1007/978-3-031-34783-2_7.

21. Fernando García-Avila, Pablo Loja-Suco, Christopher Siguenza-Jeton, Magaly Jiménez-Ordoñez, Lorgio Valdiviezo-Gonzales, Rita Cabello-Torres, Alex Aviles-Añazco. (2023). Evaluation of the water quality of a high Andean lake using different quantitative approaches. Ecological Indicators, 154, p.110924. https://doi.org/10.1016/j.ecolind.2023.110924.

22. Arun Kumar Pramanik, Deepanjan Majumdar, Abhik Chatterjee. (2022). Groundwater hydrochemistry and consumption patterns in Chandwara community development block of Jharkhand state in India. Applied Water Science, 12(4) https://doi.org/10.1007/s13201-022-01587-6.

23. Oluwaseun Princess Okimiji, John Nyandansobi Simon, Moses Akintayo Aborisade, Oludare Hakeem Adedeji, Angela Tochukwu Okafor, Opeyemi Oluwaseun Tope-Ajayi, Jennifer Obioma Ezennia. (2024). Integrated GIS-based and water quality index for evaluation of groundwater quality in the coastal slum settlements of Lagos, Nigeria. Groundwater for Sustainable Development, 25, p.101170. https://doi.org/10.1016/j.gsd.2024.101170.

24. Mwatukange Priskila, Naomab Erold, Rafiu Awofolu Omotayo. (2023). Groundwater quality assessment and human health risks in Ovitoto, Otjozondjupa Region, Namibia. African Journal of Environmental Science and Technology, 17(12), p.302. https://doi.org/10.5897/AJEST2023.3237.

25. Olukayode D. Akinyemi. (2022). Multivariate interrelatedness of geotechnical and petrophysical properties towards developing near-surface lithology clusters in a sedimentary terrain. Bulletin of Engineering Geology and the Environment, 81(7) https://doi.org/10.1007/s10064-022-02755-3.

26. Loganathan Krishnamoorthy, Vignesh Rajkumar Lakshmanan. (2024). Hydrogeochemical Evaluation and Multivariate Statistical Analysis of Groundwater for Sustainable Groundwater Quality Management in the Industrial Corridor of Ranipet District, Tamil Nadu, India. Water, Air, & Soil Pollution, 235(10) https://doi.org/10.1007/s11270-024-07443-4.

Dimensions

PlumX

Article abstract page views

872

Downloads

Download data is not yet available.