Published
Research into the effects of seawater velocity variation on migration imaging in deep-water geology
DOI:
https://doi.org/10.15446/esrj.v20n3.56382Keywords:
Seawater velocity, Deep-water geology, Migration Imaging, Migration velocity, Velocidad del agua marina, geología de aguas profundas, imágenes de migración, velocidad de migración. (en)Downloads
This paper aims at the problem that in deep water the migration quality is poor, and starts with the influence that velocity model accuracy has on migration, studying influence that variable seawater velocity makes on migration effect. At first, variable seawater velocity influenced by temperature, pressure and salinity is defined to replace the true seawater velocity. Then variable seawater velocity’s influence on interface migration location, layer sickness and migration energy focusing degree are analyzed in theory. And finally a deep water layered medium model containing variable seawater velocity, a syncline wedge shape model and a complex seafloor velocity model are constructed. By changing the seawater velocity of each model and comparing migration results of constant seawater-velocity model and variable seawater-velocity model, we can draw the conclusion: Under the condition of deep water, variable seawater-velocity’s impact on the quality of seismic migration is significant, which not only can change the location of geologic body migration result, but also can influence the resolution of geologic interface in the migration section and maybe can cause migration illusion.
Investigación de los efectos de la variación en la velocidad del agua marina sobre las imágenes de migración en la geología de aguas profundas
Resumen
Este artículo se enfoca en el problema de la baja calidad de la migración en aguas profundas. Se analiza la influencia que tiene el modelo de precisión de velocidad en la migración y se estudia el impacto que la variación de velocidad del agua marina tiene en el efecto de movimiento. En primera instancia, se define la variación de la velocidad del agua marina afectada por la temperatura, la presión y la salinidad para reemplazar la velocidad del agua marina actual. Luego se analiza la teoría de la influencia de la velocidad del agua marina sobre la interfaz de la ubicación de migración, el grosor de la capa y la energía de movimiento de acuerdo con la inclinación. Además, finalmente, se construyó un modelo medio por capas de aguas profundas que contiene las variaciones de velocidad del agua marina, un modelo de forma de cuña sinclinal, y un modelo de complejo de velocidades del lecho marino. Al cambiar la velocidad del agua marina en cada modelo y comparar los resultados de migración del modelo de velocidad de agua marina constante con los del modelo modelo de velocidad variable se encontró la conclusión. Bajo las condiciones de agua profunda, el impacto de la variación de la velocidad del agua es significativo en la migración sísmica, lo que no solo puede cambiar el resultado de migración en la ubicación del cuerpo geológico sino que además puede influir en la resolución de la interconexión geológica en la sección de movimiento y podría causar la ilusión de migración.
References
Barley, B. (1999). Deepwater problems around the word. The Leading Edge, 18(4), 488-493. DOI: 10.1190/1.1438319
Chen, J., & Wen, N. (2010). The geophysical atlas of the South China Sea. Science Press, Beijing.
Dyk, K., & Swainson, O. W. (1953). The velocity and ray paths of sound waves in deep sea water. Geophysics, 18(1), 75-103. DOI: 10.1190/1.1437867
Feng, S. Z. (1999). Marine science introduction. Higher Education Press, Beijing.
Han, F. X., Sun, J. G., & Wang, K. (2012). The in uence of seawater velocity variation on seismic traveltimes, raypaths, and amplitude. Applied Geophysics, 9(3), 319-325.
Herron, D. A. (2000). Pitfalls in seismic interpretation: Depth migration artifacts. The Leading Edge, 19(9), 1016-1017. DOI: 10.1190/1.1438756
Jones, E. J. W. (1999). Marine Geophysics. John Wiley & Sons, England.
Jones, S. M., Sutton, C., Hardy, R. J. J. & Hardy, D. (2010). Seismic imaging of variable water layer sound speed in Rockall Trough, NE Atlantic and implications for seismic surveying in deep water. Geological Society, London, Petroleum Geology Conference series 7, 549-558. DOI: 10.1144/0070549
Lacombe, C., Schultzen, J., Butt, S., & Lecerf, D. (2006). Correction for water velocity variations and tidal statics. 68th EAGE Conference & Exhibition. DOI: 10.3997/2214-4609.201402385
Li, Q. P. (2006). The situation and challenges for deepwater oil and gas exploration and exploitation in China. China Offshore Oil and Gas, 18(2), 130-133.
MacKay, S., Fried, J., & Carvill, C. (2003). The impact of water-velocity variations on deepwater seismic data. The Leading Edge, 22(4), 344-350
Papenberg, C., Klaeschen, D., & Krahmann, G. (2010). Ocean temperature and salinity inverted form combined hydrographic and seismic data. Geophysical Research Letters, 37(4). DOI: 10.1029/2009GL042115
Song, Y., Song, H. B., Chen, L. (2010). Seawater thermohaline structure inversion from seismic data. Chinese Journal of Geophysics, 53(11), 2696-2702. DOI: 10.1002/cjg2.1569
Versteeg, R. J. (1993). Sensitivity of prestack depth migration to the velocity model. Geophysics, 58(6), 873-882. DOI: 10.1190/1.1443471
Xu, S., & Pham, D. (2003). Global solution to water column statics: A new approach to an old problem. 73rd Ann. Internat. Mtg.: Soc. Expl. Geophys.
Zhao, X. Y. (1985). The comprehensive research report of the South China Sea. Science Press, Beijing. Zhu, J., Lines, L., & Gray, S. (1998). Smiles and frowns in migration/ velocity analysis. Geophysics, 63(4), 1200-1209.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Hui Sun, Feilong Yang, Fanchang Meng, Zhihou Zhang, Cheng Gao, Mingchen Liu. (2018). A Topographic Kirchhoff Dynamic Focused Beam Migration Method Based on Compressed Sensing. IEEE Access, 6, p.56666. https://doi.org/10.1109/ACCESS.2018.2873174.
2. Hui Sun, Zhihou Zhang, Guangmin Hu, Fanchang Meng, Cheng Gao, Mingchen Liu, Jing Tang, Yaojun Wang, Feilong Yang. (2018). Kirchhoff Beam Migration Based on Compressive Sensing. IEEE Access, 6, p.26520. https://doi.org/10.1109/ACCESS.2018.2828160.
3. Hui Sun, Jiabin Li, Meng Li, Longlong Xia, Rui Deng, Shigui Zou, Zhihou Zhang, Fanchang Meng. (2018). High-accuracy Kirchhoff beam migration. SEG 2018 Workshop: Reservoir Geophysics, Daqing, China, 5–7 August 2018. , p.203. https://doi.org/10.1190/REGE2018-52.1.
4. Hui Sun, Fanchang Meng, Zhihou Zhang, Cheng Gao, Mingchen Liu. (2018). High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth Sciences Research Journal, 22(4), p.327. https://doi.org/10.15446/esrj.v22n4.77362.
5. Mehak Kaur, Hishita Peshwani, Mayurika Goel. (2025). Microalgal Biofuels. , p.257. https://doi.org/10.1016/B978-0-443-24110-9.00012-8.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2016 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.