Published
Integrating Geochemical Anomaly and Remote Sensing Methods to Predict Oil- and Gas-Bearing Areas in the Yanchang Oil Field, Ordos Basin, China
Integración de métodos de anomalías geoquímicas y de teledetección para predecir las áreas gasíferas y petrolíferas en el campo Yanchang, en la cuenca de Ordos, China
DOI:
https://doi.org/10.15446/esrj.v23n1.57544Keywords:
oil seepage, hyperspectral remote sensing, geochemistry, anomaly, hydrocarbon, prospecting area, (en)filtración de crudo, teledetección hiperespectral, geoquímica, anomalías, hidrocarburos, áreas prospecto, (es)
Downloads
Oil seepage is one of the most important characteristics of hydrocarbon formation, and understanding oil seepage is crucial for oil-gas exploration and the assessment of petroleum resources. Remote sensing and geochemical methods have the same material and theoretical bases for extracting oil and gas information from underlying strata and the identification of media features. As an emerging exploration method, hyperspectral remote sensing is efficient compared with traditional geochemistry because it is a finer, and sometimes more directly quantitative method for determining the specific mineral anomaly content. Hence, the use of both methods together is important. This paper describes the analysis of hyperspectral remote sensing data and the extraction of abnormal index information, including the level of carbonate alteration and the content of acidolytical hydrocarbons, pyrolysis hydrocarbons, headspace gas, and ferric and ferrous ions. The two methods have mutual authentication, and they are complementary and are useful in oil-bearing areas. When these methods are integrated, the acidolytical hydrocarbon index is the most effective geochemical index and is better at characterizing the oil field distribution than other indices. Also, hydrocarbon geochemical anomalies occurring in oil fields generally show continuous distribution points and are consistent with oil reservoirs. Consequently, a 3D model was established to comprehensively utilize hyperspectral remote sensing and geochemical data to determine the distribution of petroleum reservoirs efficiently as well as to delineate oil- and gas-bearing prospects. There is great potential for determining oil- and gas-bearing fields through the integration of hyperspectral and geochemical data.
La filtración de crudo es una de las características más importantes de la formación de hidrocarburos y entender este fenómeno es crucial para la exploración petrogasífera y la evaluación de recursos petrolíferos. Los métodos de teledetección y geoquímicos tienen las mismas bases teóricas y el mismo material de información para la extracción de gas y petróleo de las capas subyacentes y de identificación de las características del medio. Como un método emergente de exploración, la teledetección hiperespectral es eficiente comparada con la geoquímica tradicional, ya que es un método más fino y, en algunos casos, más directamente cuantitativo en la determinación del contenido de anomalías minerales específicas. Por consiguiente, el uso conjunto de ambos métodos es importante. Este artículo describe el análisis de información de la teledetección hiperespectral y la extracción de un índice de información anormal que incluye el nivel de alteración de carbonato y el contenido de hidrocarburos acidolíticos, hidrocarburos pirolíticos, espacios de gas, e iones férricos y ferrosos. Los dos métodos tienen una autenticación mutua, son complementarios y útiles en las areas petrolíferas. Cuando estos métodos se integran, el índice de hidrocarburos acidolíticos es el índice geoquímico más efectivo y es el mejor para caracterizar la distribución del campo petrolífero. Además, las anomalías geoquímicas de hidrocarburos que ocurren en los campos generalmente muestran los puntos de distribución y coinciden con las reservas de crudo. Por esto se estableció un modelo 3D para utilizar la teledetección hiperespectral integralmente con la información geoquímica para determinar la distribución de las reservas petrolíferas eficientemente, al igual que para delinear los prospectos gasíferos y petrolíferos. Existe un gran potencial para determinar los campos gasíferos y petrolíferos a través de la integración de información hiperespectral y geoquímica.
References
Agar, B. & Coulter, D. (2007). Remote sensing for mineral exploration–a decade perspective 1997-2007. Proceedings of Exploration ‘07: Fifth Decennial International Conference on Mineral Exploration, 109-136.
Asadzadeh, S. & de Souza Filho, C.R. (2016). A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69-90.
Bateson, C., Asner, G.P. & Wessman, C.A. (2000). Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 1083-1094.
Blake, A. J. (2013). Investigating tax distortions: an applied model of petroleum exploration and extraction decisions. Natural Resource Modeling, 26(1), 66-90.
Cao, W., Li, B. C. & Zhang, Y. (2003). A remote sensing image fusion method based on PCA transform and wavelet packet transform. In: Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on Vol. 2, pp. 976-981. IEEE.
Chang, X. H. (2013). Fracture propagation in shallow tight reservoirs of Fuxian Block. Petroleum Drilling Techniques, 3, 028.
Chen, Y. N., Sun, D. W., Cheng, J. H. & Gao, W.H. (2016). Recent advances for rapid identification of chemical information of muscle foods by hyperspectral imaging analysis. Food Engineering Reviews, 1-15.
Cheng, Y. & Tong, L. Q. (2015). The Research on Model of the Alteration Mineral Mapping base on Multi-level Separate Background and an Application Examples. Remote Sensing Technology and Application, 3, 586-591.
Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B. & Gent, C. A. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research: Planets, 108(E12).
Cui, L. J., Qiu, Y., Fei, T., Liu, Y. L. & Wu, G. F. (2013). Using remotely sensed suspended sediment concentration variation to improve management of Poyang Lake, China. Lake and Reservoir Management, 29(1), 47-60.
De Carolis, G., Adamo, M. & Pasquariello, G. (2014). On the estimation of thickness of marine oil slicks from sun-glittered, near-infrared MERIS and MODIS imagery: The Lebanon oil spill case study. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 559-573.
Deng, J., Wang, Q. F. & Huang, D. H. (2005). Basement evolution of the Ordos Basin and its constraint on cap rock. Earth Science Frontiers, 12(3), 91.
Du, P. J., Fang, T., Tang, H. & Chen, Y. Y. (2005). Spectral features extraction in hyperspectral RS data and its application to information processing. Acta Photonica Sinica, 34(2), 293-298.
Du X. D., Tang Y. & Liu D. C. (2015). The application of aerial hyperspectral technology to the geological survey for oil and gas in the East Junggar Basin. Geology of China, 42(1), 275-287.
Duan, Y., Wang, C. Y., Zheng, C. Y., Wu, B. X. & Zheng, G. D. (2008). Geochemical study of crude oils from the Xifeng oilfield of the Ordos basin, China. Journal of Asian Earth Sciences, 31(4), 341-356.
Eismann, M. T. & Stein, D. (2007). Stochastic mixture modeling. Hyperspectral Data Exploitation: Theory and Applications, 148.
Ellis, J. M., Davis, H. H. & Zamudio, J. A. (2001). Exploring for onshore oil seeps with hyperspectral imaging. Oil and Gas Journal, 99(37), 49-58.
Goetz, A. F. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113, S5-S16.
Goetz, A. F. & Rowan, L. C. (1981). Geologic remote sensing. Science, 211(4484), 781-791.
Gregory, A. F. & Moore, H. D. (1975). The role of remote sensing in mineral exploration with special reference to ERTS-1. CIM Bulletin, 68(757), 67–72.
Gu, X. X., Zhang, Y. M., Li, B. H., Xue, C. J., Dong, S. X., Fu, C. H., Chen, W. B., Liu, L. & Tun, C. B. (2010). The coupling relationship between metallization and hydrocarbon accumulation in sedimentary basins. Earth Science Frontiers, 17, 83-105.
Heylen, R., Parente, M. & Gader, P. (2014). A review of nonlinear hyperspectral unmixing methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 1844-1868.
Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501-513.
Hunt, G. R. (1979). Near-infrared (1.3-2.4) μm spectra of alteration minerals-Potential for use in remote sensing. Geophysics, 44(12), 1974-1986.
Jiang, T., Tang, Y. P., Wu, X. H. & Zhang, H. Q. (2013). Application of the oil and gas geochemical exploration in low permeability oil and gas resources exploration: Taking Yingnan 2 gas reservoir and an Ordos oil field as examples. Natural Gas Geoscience, 4, 20.
Jiang, T., Zhao, K. B., Rong, F. Z. & Zhang, H. Q. (2011). Vertical micro-migration of hydrocarbons from subsurface reservoirs and geological significance in near-surface geochemical exploration for oil and gas. Natural Gas Geoscience, 5, 25.
Kandpal, L. M., Lohumi, S., Kim, M. S., Kang, J. S. & Chao, B. K. (2016). Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors and Actuators B: Chemical, 229, 534-544.
Kruse, F. A., Bedell, R. L., Taranik, J. V., Peppin, W. A., Weatherbee & Calvin, W. M. (2012). Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. International Journal of Remote Sensing, 33(6), 1780-1798.
Lei, T. C., Wan, S. & Chou, T. Y. (2008). The comparison of PCA and discrete rough set for feature extraction of remote sensing image classification–A case study on rice classification, Taiwan. Computational Geosciences, 12(1), 1-14.
Lennon, M., Babichenko, S., Thomas, N., Mariette, V., Mercier, G. & Lisin, A. (2006). Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence. EARSeL eProceedings, 5(1), 120-128.
Li, S., Deng, X., Pang, J., Lu, J.W. & Liu, X. (2010). Relationship between petroleum accumulation of Mesozoic and tectonic movement in Ordos Basin. Acta Sedimentologica Sinica, 28(4), 798-807.
Liu, C.Y., Zhao, H.G., Gui, X.J., Yue, L.P., Zhao, J.F. & Wang, J.Q. (2006). Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin. Acta Geologica Sinica, 80(5), 617-638.
Liu, D. C., Li, Z. Z. & Wang, J. H. (2011). The technology progress and developing future of remote sensing geological prospecting in China. Journal of Geo-Information Science, 4, 2.
Liu, G. D. (2007). Geodynamical evolution and tectonic framework of China. Earth Science Frontiers, 14(3), 39-46.
Liu J., Wang D. M., Liu D. C., Zheng, H. R. & Sui, Z. W. (2015). Oil and gas anomaly extraction by combining hyperspectral image data with multispectral image data. Earth Science, 40(8), 1371-1380.
Liu, L., Zhou, J., Jiang, D., Zhuang, D. F., Mansaray, L. R., Hu, Z. J. & Ji, Z. B. (2016). Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China. Scientific Reports, 6, 21851.
Liu, X. S., Xi, S. L., Huang, D. J., Zhang, Q. & Wang, X. (2008). Dynamic conditions of Mesozoic petroleum secondary migration, Ordos Basin. Petroleum Exploration and Development, 35(2), 143-147.
Liu, Y. E., Huang, Y. M., Wei, X. F., Sun, F. J. & Lin, J. (2003). Analysis of provenance of late Paleozoic in the northern Ordos Basin and its geological significance. Journal of Mineralogy and Petrology, 23(3), 82-86.
Lo, E. (2015). Partitioned correlation model for hyperspectral anomaly detection. Optical Engineering, 54(12), 123114.
Lu, Z. Q., Rao, Z., Zhu, Y. H., Liu, H. & Zhang, Y. Q. (2013). Gas geochemical features of the DK-8 gas hydrate drilling hole in the permafrost of Qilian mountain, and their indicative significance. Acta Geologica Sinica, 87(8), 1167-1178.
Luo, Q. (2008). Characteristics of faults in Majiatan area of west Ordos basin and their petroleum reservoir controlling model. Acta Geologica Sinica, 29, 619-627.
Luo, X. (2011). Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration. AAPG bulletin, 95(6), 881-898.
Ni, G. Q., Shen, Y. T. & Xu, D. Q. (2007). Wavelet-based principal components analysis feature extraction method for hyperspectral images. Transactions of Beijing Institute of Technology, 7, 013.
Otremba, Z., Zielinski, O. & Hu, C. (2013). Optical contrast of oil dispersed in seawater under windy conditions. Journal of the European Optical Society Rapid Publications, 8, 13051.
Panciera, R., Walker, J. P. & Merlin, O. (2009). Improved understanding of soil surface roughness parameterization for L-band passive microwave soil moisture retrieval. IEEE Geoscience and Remote Sensing Letters, 6(4), 625-629.
Petrovic, A., Khan, S. D. & Thurmond, A. K. (2012). Integrated hyperspectral remote sensing, geochemical and isotopic studies for understanding hydrocarbon-induced rock alterations. Marine and Petroleum Geology, 35(1), 292-308.
Ren, Z. L., Zhang, S., Gao, S. L., Cui, J. P. & Liu, X. S. (2006). Research on region of maturation anomaly and formation time in Ordos Basin. Acta Geologica Sinica, 80(5), 674-684.
Richards, J. A. (2005). Analysis of remotely sensed data: The formative decades and the future. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 422-432.
Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3), 157-183.
Sun, S. W. (2012). The exploration and evaluation of petroleum resource based on remote sensing technology. Physics Procedia, 33, 1119-1123.
Svejkovsky, J., Lehr, W., Muskat, J., Graettinger, G. & Mullin, J. (2012). Operational utilization of aerial multispectral remote sensing during oil spill response. Photogrammetric Engineering and Remote Sensing, 78(10), 1089-1102.
Tian, S. F. & Wang, X. N. (2000). Application of satellite remote sensing technique in land desertification investigating in Duolun county, the inner Mongolia autonomous region. Geoscience, 4, 459-464.
Tissot, B. & Welte, D. (2012). Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer Science & Business Media.
Turner, B. R. (1980). Palaeozoic sedimentology of the southeastern part of Al Kufrah Basin, Libya: a model for oil exploration. The Geology of Libya, 2, 351-374.
Van der Kwast, J., Uljee, I., Engelen, G., Van de Voorde, T., Canters, F. & Lavalle, C. (2009). Using remote sensing derived spatial metrics for the calibration of land-use change models. In: Urban Remote Sensing Event, 2009 Joint (pp. 1-9). IEEE.
Wang, J. M, Liu, S. F., Li, J., Zhang, Y. F. & Gao, L. (2011). Characteristics and causes of Mesozoic reservoirs with extra-low permeability and high water cut in northern Shaanxi. Petroleum Exploration and Development, 38(5), 583-588.
Wang, J. M. & Wang, J. Y. (2013). Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin. Petroleum Exploration and Development, 40(1), 52-60.
Wang, J. Q., Li, S. L., Sun, J., Dong, H. P. & Zhao, Q. F. (2015) Submarine hydrocarbon seepage and deep oil and gas properties in northern depression, South Yellow Sea Basin. Lithologia Reservoirs, 27(5), 122-127.
Wang, R. S., Xiong, S. Q., Nie, H. F., Liang, S. N., Qi, Z. R., Yang, J. Z. & Lin, J. (2011). Remote sensing technology and its application in geological exploration. Acta Geologica Sinica, 85(11), 1699-1743.
Wang, X. Z., Fu, J. H., Li, Z. Z., Guo, J. M., Gao, R. M., Yao, J. L., Zhang, L. X., Ren, L. Y., He, Y. H., Ma, F. X., Meng, W. C. & Bai, X. Y. (2015). Study on the hyperspectral information extraction of oil and gas microseepage in the Ordos Basin. Natural Gas Geosciences, 26(10), 1917-1924.
Wang, X. Z., Gao, S. L. & Gao, C. (2014). Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China. Petroleum Exploration and Development, 41(3), 326-337.
Wang, Y. (2010). Hydrocarbon microseepage information extracting through remote sensing technology in front range of longmenshan. Coal Geology of China, 22(10), 10-16.
White, M. A., Beurs, D., Kirsten, M., Didan, K., Inouye, D. W., Richardson, A. D. & Leeuwen, V. (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15(10), 2335-2359.
Wu, B., Zhang, L. P. & Li, P. X. (2005). Projective iterative unmixing of hyperspectral image based on spectral domain wavelet feature. Acta Electronica Sinica, 33(11), 1933.
Wu, S. T., Zhu, R. K., Cui, J. G., Cui, J. W., Bai, B., Zhang, X. X., Jin, X., Zhu, D. S., You, J. C. & Li, X. H. (2015). Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2), 185-195.
Xu, D. Q., Ni, G. Q., Jiang, L. L., Li, T., Ge, S. L. & Shu, X. B. (2007). Study on exploring for gas based on analysis of spectral absorption features. Spectroscopy and Spectral Analysis, 27(11), 2150.
Yang, G. J., Li, C. C., Yu, H. Y., Xu, B., Feng, H. K, Gao, L. & Zhu, D. M. (2015). UAV based multi-load remote sensing technologies for wheat breeding information acquirement. Transactions of the Chinese Society of Agricultural Engineering, 31(21), 184-190.
Yang, H., Meer, F. V. D., Zhang, J. & Kroonenberg, S. B. (2000). Direct detection of onshore hydrocarbon microseepages by remote sensing techniques. Remote Sensing Reviews, 18(1), 1-18.
Yao, J. L., Deng, X. Q., Zhao, Y. D., Han, T. Y., Chu, M. J. & Pang, J. L. (2013). Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 40(2), 161-169.
Yi, L., Liu, Z. & Zou, C. N. (2016). Joint control over reservoirs by faults and uplifts: formation of large-scale gas reservoirs in marginal reefs of carbonate tableland. China Petroleum Exploration, 10, 1917-1924.
Zhang, J. C., Jiang, S. L., Tang, X., Zhang, P. X., Tang, Y. & Jin, T. Y. (2009). Accumulation types and resources characteristics of shale gas in China. Natural Gas Industry, 29(12), 109-114.
Zhang, X. L., Duan, Y., He, J. X., Wu, B. X., Xu, L. & Xia, J. (2013). Analysis of reservoir forming conditions of Chang-8 formation in Huaqing area, Ordos Basin. Geological Science and Technology Information, 4, 20.
Zhao, J. F, Liu, C. Y., Yu, L., Liang, J. W. & Huang, L. (2006). Sedimentary tectonic features of Ordos Basin in Middle Jurassic Zhiluo-Anding stages. Oil & Gas Geology, 2, 4.
Zhao, Z. Y., Guo, Y. R., Wang, Y. & Lin, D. J. (2012). Study progress in tectonic evolution and paleogeography of Ordos Basin. Tezhong Youqicang-Special Oil & Gas Reservoirs, 19(5), 15-20.
Zheng, J. J., Hu, H. F., Sun, G. Q. & Ji, L. M. (2006). Carbon isotopic characteristics of hydrocarbon gases from coal-measure source rocks—A thermal simulation experiment. Chinese Journal of Geochemistry, 25(2), 167-172.
Zheng, Z. W., Liu, J. C. & Li, R. X. (2015). Controls to oil accumulation in sandstone beds with low permeability by micro-structure: Example from western area of Fengfuchuan Oilfield in northern Shaanxi. Northwestern Geology, 4, 30.
Zhou, Z. Y. (2014). Progress in hyperspectral remote sensing for petroleum prospecting. Remote Sensing Technology and Application, 29(2), 352-36.
Zhu, X. M., Deng, X. Q., Liu, Z. L., Sun, B., Liao, J. J. & Hui, X. (2013). Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine: An example from Triassic Yanchang Formation in Ordos Basin. Earth Science Frontiers, 20(2), 19-28.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Fan Xie, Yongfu Zhu, Fangfei Li. (2021). Modeling and analysis of the influencing factors of illite resistivity in ultra-low permeability oilfield. Arabian Journal of Geosciences, 14(10) https://doi.org/10.1007/s12517-021-06970-2.
2. Sudip Kumar Saha. (2022). Remote Sensing and Geographic Information System Applications in Hydrocarbon Exploration: A Review. Journal of the Indian Society of Remote Sensing, 50(8), p.1457. https://doi.org/10.1007/s12524-022-01540-9.
3. Marcos Antonio Klunk, Sudipta Dasgupta, Mohuli Das, Rommulo Vieira Conceição, Soyane Juceli Siqueira Xavier, Farid Chemale, Paulo Roberto Wander. (2021). Application of geochemical modelling software as a tool to predict the diagenetic reactions between the marine connate water and the salt dome in a petroleum system. Journal of South American Earth Sciences, 109, p.103272. https://doi.org/10.1016/j.jsames.2021.103272.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.