Published

2019-04-01

Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India

Modelos de velocidad cortical obtenidos de la información de ondas de dispersión superficiales en la región de Gujarat, en el occidente peninsular de la India

DOI:

https://doi.org/10.15446/esrj.v23n2.58570

Keywords:

Crustal Structure, Gujarat region, Surface wave, Dispersion, Genetic Algorithm (en)
estructura de la corteza, region Gujarat, onda superficial, dispersión, algoritmo genético (es)

Downloads

Authors

  • Vishwa Joshi Gujarat University - Institute of Seismological Research

The physiographic features of Gujarat state of western India are unique, as they behaved dynamically with several alterations and modifications throughout the geological timescale. It displays a remarkable example of a terrain bestowed with geological, physiographical and climatic diversities. The massive 2001 Bhuj earthquake (M 7.7) over the Kachchh region caused severe damage and devastation to the state of Gujarat and attracted the scientific community of the world to comprehend on its structure and tectonics for future hazard reduction. In the present study, three clusters of wave paths A, B1, and B2 have considered. In each cluster, dispersion data were measured station by station which collectively formed a dispersion data file for a nonlinear inversion through Genetic algorithm. In this way, three crustal velocity models were generated for entire Gujarat. These models are 1) Across Cambay Basin (Path A), 2) Along Saurashtra - Kathiawar Horst (Path B1) and 3) Along Narmada Basin (Path B2), which were formed at different times during the Mesozoic. The average thickness of the crust estimated in the present study for paths A, B1 and B2 are 38.2 km, 36.2 km, and 41.6 km respectively and the estimated S-wave velocity in the lower crust is ~ 3.9 km/s for all the paths. The present study will improve our knowledge about the structure of the seismogenic layer of this active intraplate region 

Las características fisiográficas del estado occidental de la India son únicas, ya que ellas actúan dinámicamente con varias alteraciones y modificaciones a través de la escala de tiempo geológica. Estas características son el ejemplo de un terreno con diversidades climáticas, fisiográficas y geológicas. El terremoto de Bhuj en 2001 (de magnitud 7.7.) en el distrito de Kutch causó varios daños y devastación al estado de Gujarat, al tiempo que atrajo a la comunidad científica del mundo para estudiar su estructura y tectónica con el fin de reducir futuros peligros. En el estudio presente se consideraron tres grupos de trayectorias de ondas, A, B1 y B2. En cada grupo la información de dispersión se midió estación por estación y el conjunto de datos de dispersión recolectados permitió una inversión no lineal a través de un algoritmo genético. De esta forma, tres modelos de velocidad cortical se generaron para todo Gujarat. Estos modelos son: 1. A lo largo de la cuenca Cambay (Trayecto A). 2. A lo largo de Saurashtra - Kathiawar Horst (Trayecto B1). 3. A lo largo de la cuenca Narmada (Trayecto 2), los cuales se formaron en momentos diferentes durante el Mesozoico. El promedio del grosor de la capa estimado en este estudio para las trayectorias A, B1, y B2 es de 38,2 km, 36,2 km y 46,1 km respectivamente, y la velocidad de la onda S en la parte baja de la capa es de ~ 3.9 km/s para todas las trayectorias. Este trabajo debe contribuir el conocimiento acerca de la estructura de la capa sismogénica de esta activa región que yace entre placas.

References

Bhattacharya, S. N. (1981). Observation and inversion of surface wave group velocities across Central India. Bulletin of the Seismological Society of America, 71, 1489–1501.

Bhattacharya, S. N. (1983). Higher order accuracy in multiple filter technique. Bulletin of the Seismological Society of America, 73, 1395–1406.

Bhattacharya, S. N., & Dattatrayam, R. S. (2000). Recent advances in seismic Instrumentation and data interpretation in India. Current Science, 79, 1347–1358.

Biswas, S. K. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135, 307–327.

Biswas, S. K. (1999). A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects. PINSA, 65A(3), 261-283.

Biswas, S. K. & Deshpande, S. V. (1983). Geology and hydrocarbon prospects of Kachchh, Saurashtra, and Narmada Basins. Petroleum Asia Journal, 6(4), 111-126.

Biswas, S. K., (1982). Rift basins in the western margin of India and their hydrocarbon prospects. Bulletin of the American Association of Petroleum Geologists, 66(10), 1497-1513.

Bloch, S., Hales, A. L. & Landisman, M. (1969). Velocities in the crust and upper mantle of Southern Africa from multi-mode surface wave dispersion. Bulletin of the Seismological Society of America, 59, 1599–1629.

Campbell, I. H. & Griffiths, R. W. (1990). Implications of mantle plume structure for the evaluation of flood basalts. Earth and Planetary Sciences Letters, 99, 79-93.

Chung, W. Y. & Gao, H. (1995). Source parameters of the Anjar earthquake of July 21, 1956, India, and its seismotectonic implications for the Kachchh rift basin. Tectonophysics, 242, 281-292.

Dixit, M. M., Tewari, H. C. & Rao, C. V. (2010). Two-dimensional velocity model of the crust beneath the South Cambay Basin, India from refraction and wide-angle reflection. Geophysical Journal International, 181, 635-652.

Joshi, V. & Rastogi, B. K. (2015). Evaluation and comparison of the crustal structure of the Indus block up to Kachchh region and Saurashtra region using GA inversion of surface wave dispersion. Indian Journal of Applied Research, 5(5), 424-427. DOI: 10.15373/2249555X

Kaila, K. L., Krishna, V. G. & Mall, D. M. (1981). Crustal structure along Mehmedabad-Billimora profile in the Cambay basin, India, from deep sesmic sounding. Tectonophysics, 76, 99-130.

Kaila, K. L., Rao, I. B. P., Rao, K. P., Rao, M. N., Krishna, V. G., & Sridharand, A.R. (1989). DSS studies over Deccan Traps along the Thuadara Sendhwa Sindad profile across Narmada Son Lineament. India AGU Geophysical Monograph-5 IUGG. In: Mercu, R.F., Mueller, St., Fountain, D.M. (Eds.), Properties and Processes of the Earth's Lower Crust, 127-142.

Kaila, K. L., Reddy, P. R., Dixit, M. M. & Rao, P. K. (1985). Crustal structure across the Narmada-Son lineaments, central India, from deep seismic soundings. Journal of the Geological Society of India, 26(7), 465-486.

Kaila, K. L., Tewari, H. C., Krishna, V. G., Dixit, M. M., Sarkar, D. & Reddy, M. S. (1990). Deep seismic sounding studies in the north Cambay and Sanchor basins, India. Geophysical Journal International, 103, 621-637.

Kayal, J. R., Sagina Ram, D. R., Srirama, B. V. & Gaonkar, S. G. (2000a). Aftershocks of the 26 January, 2001 Bhuj earthquake in western India and its seismotectonic implications. Journal of the Geological Society of India, 59, 395-417.

Kayal, J. R., Zhao, D., Mishra, O. P., Reena, D. & Singh, O. P. (2002b). The 2001 Bhuj earthquake: Tomography evidence for fluids at hypocenter and its implications for rupture nucleation. Geophysical Research Letters, 29(24), 51-54.

Kennett, B. L. N. & Widiyantoro, S. (1999). A low seismic wave speed anomaly beneath North Western India: a seismic structure of Deccan hotspot? Earth and Planetary Science Letters, 165, 145-155.

Lomax, A. & Snieder, R. (1995). The contrast in upper shear-wave velocity between the east European platform and tectonic Europe obtained with genetic algorithm inversion of Rayleigh-wave group dispersion. Geophysical Journal International, 123(1), 169-182.

Mandal, P. (2006). Sedimentary and crustal structure beneath Kachchh and Saurashtra regions, Gujarat, India. Physics of the Earth and Planetary Interiors, 155, 286-299.

Mandal, P., Horton, S. & Pujol, J. (2006). Relocation, Vp and Vp/Vs Tomography, Focal Mechanisms and other related studies using aftershock data of the Mw 7.7 Bhuj earthquake of January 26, 2001. The Journal of Indian Geophysical Union, 10(1), 31-44.

Mckenzie, D. P. & Sclater, J. G. (1971). The evolution of the Indian Ocean since the late Cretaceous. Geophysical Journal International, 25, 437-528.

Merh, S. S. (1995). Geology of Gujarat. Geological Society of India.

Morgan, W. J. (1981). Hotspot tracks and the opening of the Atlantic and Indian Oceans. The sea 7. John Wiley and sons Inc., New York, pp. 443-475.

Prajapati, S., Suresh, G. & Bhattacharya, S. N. (2011). Crustal Structure of the Northwest Deccan Volcanic Province, India, and the Adjoining Continental Shelf from Observed Surface-Wave Dispersion. Bulletin of the Seismological Society of America, 101(4), 1488-1495.

Prajapati, S., Chauhan, M., Gupta, A. K., Pradhan, R., Suresh, G. & Bhattacharya, S. N. (2011). Shield-Like Lithosphere of the Lower Indus Basin Evaluated from Observation of Surface-Wave Dispersion. Bulletin of the Seismological Society of America, 101 (2), 859-865.

Radhakrishna, M., Verma, R. K. & Purushotham, A. K. (2002). Lithopsheric structure below the eastern Arabian Sea and adjoining west coast of India based on integrated analysis of gravity and seismic data. Marine Geophysical Research, 23, 25–42.

Rao, G. S. P., & Tewari, H. C. (2005). The seismic structure of the Saurashtra crust in northwest India and its relationship with the Reunion Plume. Geophysical Journal International, 160, 318-330.

Rao, K. M., Ravi Kumar, M., Singh, A., & Rastogi, B. K. (2013). Two distinct shear wave splitting directions in the northwestern Deccan Volcanic Province. Journal of Geophysical Research-Solid Earth, 118, 5487–5499.

Raval, U. & Veeraswamy, K. (2000). The radial and linear modes of interaction between mantle plume and continental lithosphere: a case study from western India. Journal of the Geological Society of India, 56, 525-536.

Raval, U. & Veeraswamy, K. (2003). India-Madagascar separation: breakup along a pre-existing mobile belt and chipping of the craton. Gondwana Research, 6, 467-485.

Sajeva, A., Aleardi, M., Mazzotti, A., Stucchi, E. & Galuzzi, B. (2014). Comparison of Stochastic Optimization Methods on Two Analytic Objective Functions and on a 1D Elastic FWI. 76th EAGE Conference and Exhibition 2014. DOI:10.3997/2214-4609.20140857

Sridhar, A. R., & Tewari, H. C. (2000). Existence of a sedimentary graben in the western part of Narmada Zone: of seismic evidence. Journal Geodynamics, 31(2001), 19-31.

Suresh, G., Jain, S. & Bhattacharya, S. N. (2008). Lithosphere of Indus Block in the Northwest Indian Subcontinent through Genetic Algorithm Inversion of Surface-Wave Dispersion. Bulletin of the Seismological Society of America, 98(4), 1750-1755.

Tewari, H. C., Dixit, M. M. & Sarkar, D. (1995). Relationship of the Cambay Rift Basin to the Deccan Volcanism. Journal of Geodynamics, 20(1), 85-95.

White, R. S. & Mckenzie, D. P. (1989). Magmatism at rift zones; the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685-7729.

How to Cite

APA

Joshi, V. (2019). Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India. Earth Sciences Research Journal, 23(2), 147–155. https://doi.org/10.15446/esrj.v23n2.58570

ACM

[1]
Joshi, V. 2019. Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India. Earth Sciences Research Journal. 23, 2 (Apr. 2019), 147–155. DOI:https://doi.org/10.15446/esrj.v23n2.58570.

ACS

(1)
Joshi, V. Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India. Earth sci. res. j. 2019, 23, 147-155.

ABNT

JOSHI, V. Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India. Earth Sciences Research Journal, [S. l.], v. 23, n. 2, p. 147–155, 2019. DOI: 10.15446/esrj.v23n2.58570. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/58570. Acesso em: 19 aug. 2024.

Chicago

Joshi, Vishwa. 2019. “Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India”. Earth Sciences Research Journal 23 (2):147-55. https://doi.org/10.15446/esrj.v23n2.58570.

Harvard

Joshi, V. (2019) “Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India”, Earth Sciences Research Journal, 23(2), pp. 147–155. doi: 10.15446/esrj.v23n2.58570.

IEEE

[1]
V. Joshi, “Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India”, Earth sci. res. j., vol. 23, no. 2, pp. 147–155, Apr. 2019.

MLA

Joshi, V. “Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India”. Earth Sciences Research Journal, vol. 23, no. 2, Apr. 2019, pp. 147-55, doi:10.15446/esrj.v23n2.58570.

Turabian

Joshi, Vishwa. “Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India”. Earth Sciences Research Journal 23, no. 2 (April 1, 2019): 147–155. Accessed August 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/58570.

Vancouver

1.
Joshi V. Crustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India. Earth sci. res. j. [Internet]. 2019 Apr. 1 [cited 2024 Aug. 19];23(2):147-55. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/58570

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

328

Downloads

Download data is not yet available.