Published

2016-10-01

Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment

DOI:

https://doi.org/10.15446/esrj.v20n4.59496

Keywords:

Global Navigation Satellite System (GNSS), Precise Point Positioning (PPP), Relative Positioning, Forest Environment, Satellite Ephemerides, Web Based Positioning Services, Sistema Global de Navegación por Satélite, método de Posicionamiento Preciso. (en)

Downloads

Authors

  • Taylan Ocalan Yildiz Technical University
  • Bahattin Erdogan Yildiz Technical University
  • Nursu Tunalioglu Yildiz Technical University
  • Utkan Mustafa Durdag Yildiz Technical University

In recent years, due to the increase in providers of orbit and clock corrections of satellites for data evaluation in real-time and post-processing the method of Precise Point Positioning (PPP) using measurements of Global Navigation Satellite System (GNSS) and Web-based online positioning services have become widespread. Owing to some advantages, such as work-duration and cost-effectiveness, many of users have implemented PPP method instead of the traditional relative positioning method for several applications. On GNSS applications the quality of satellite ephemerides products used for data evaluation is a significant factor that affects the results in post-processing solutions either applying relative or PPP methods on analyses. These products, classified as ultra-rapid, rapid and final orbits, are regularly provided by several national and international organizations to the users. In this paper, the accuracy of PPP method has been studied comparing the outcomes from various online Web services using different software and satellite ephemerides products. For this purpose, three test points were established in a place with completely free satellite visibility (AC01) and on the other two places with partially (YC01) and vastly (KC01) prevention of satellite signals near and within a forest area at Campus of Davutpaşa of the Yildiz Technical University in Istanbul. At these stations, static observations have been conducted with a time span of 6 hours on 4th May 2015. The dataset collected using Topcon HiperPro receiver, a receiver for GPS and GLONASS data, was evaluated manually by means of the Bernese v5.2 (BSW) and GIPSY-OASIS v6.3 (Gipsy) scientific software. Moreover, the GNSS data were also proceeded using six different Web-based online services (AUSPOS, OPUS, CSRS-PPP, APPS, GAPS, Trimble-RTX) with ultra-rapid, rapid and final satellite ephemerides products. For the station with free satellite visibility (AC01), the analyses of outcomes indicate a coordinate accuracy of 1 cm for Web-based and manual data processing. That suggests relative good quality of orbit and clock corrections of satellites used by online data processing services for PPP. Furthermore, for station with partially (YC01) prevention of satellite signals, manual solutions have approximately 1 cm coordinate accuracies for n, e and u components. Moreover, when we compare the results among Web-based services, AUSPOS in relative solution and TrimbleRTX in PPP solution provides the best results. Here, one must emphasize that Trimble-RTX is a Web-based processing service for GNSS data (GPS, GLONASS, BeiDou, and QZSS) and operates an own global network of approximately 100 stations around the world for this purpose. For station with vastly (KC01) prevention of satellite signals, the best solutions were provided by APPS and CSRS-PPP using PPP approach among the Web-based services. Here, Trimble-RTX could not produce any solution. These results could demonstrate the benefit of multi-constellation of GNSS in the areas with limited satellite visibility because of increasing of the number of measurements.

 

Comparación de precisión del método de Posicionamiento Preciso frente al posicionamiento relativo a través de diferentes productos de efemérides satelitales cerca y bajo un ambiente boscoso


Resumen

En los años recientes, debido al incremento de operadores satelitales de corrección de órbita y tiempo para la evaluación de información en tiempo real y de postproceso, se ha generalizado el método de posicionamiento preciso (PPP, del inglés Precise Point Positioning) que utiliza medidas del Sistema Global de Navegación por Satélite (GNSS, del inglés Global Navigation Satellite System) y servicios web de posicionamiento en línea. Debido a ventajas como el tiempo de ejecución y la relación costo-efectividad, muchos de los usuarios han implementado el método PPP en varias aplicaciones antes que el método tradicional de posicionamiento relativo. En las aplicaciones GNSS, la calidad de los productos de efemérides satelitales utilizados para la evaluación de información es un factor significante que afecta los resultados en las soluciones postproceso sea con la aplicación de métodos relativos o PPP en los análisis. Estos productos, clasificados como ultrarrápidos, rápidos y de órbita final, los proveen a los usuarios diferentes organizaciones nacionales e internacionales. En este artículo se estudia la exactitud del método PPP en comparación con los resultados de varios servicios web que utilizan diferentes productos de software y de efemérides satelitales. Con este objetivo se establecieron tres puntos de evaluación: el primero en un lugar con completa visibilidad satelital (AC01) y los otros dos con parcial (YC01) y reducida (KC01) señal satelital, en los alrededores y al interior de una zona boscosa del campus de Davutpaşa , en la Universidad Técnica Yildiz de Estambul. En las estaciones se llevaron a cabo observaciones estáticas con intervalos de seis horas el 4 de mayo de 2015. La información se recolectó con el programa Topcon HiperPro, un receptor de GPS y GLONASS (sistema GNSS desarrollado por la Unión Soviética), y se evaluó manualmente con el software científico Bernese v5.2 (BSW) y GIPSY-OASIS v6.3 (GIPSY). Además, la información también se procesón con seis servicios web en línea (AUSPOS, OPUS, CSRS-PPP, APPS, GAPS, Trimble-RTX) con productos de efemérides ultrarrápidas, rápidas y finales. Para la estación con completa visibilidad satelital (AC01), el análisis de los resultados indican una precisión coordinada de 1 cm en los procesamientos web y manual. Esto sugiere una buena calidad de las correcciones satelitales de órbita y tiempo usadas por los servicios de procesamiento de información en línea con el método PPP. Además, para la estación con señal parcial (YC01), las soluciones manuales tienen aproximadamente 1cm de coordinación en la precisión para los componentes Norte y Este. Luego, cuando se comparan los resultados entre los servicios web, los mejores resultados fueron de AUSPOS en soluciones relativas y Trimble RTX en el método PPP. Es importante recalcar que Trimble RTX es un servicio de procesamiento web para información GNSS (GPS, GLONASS, BeiDou y QZSS) y opera una red global propia de unas 100 estaciones en el mundo para este fin. Para la estación con una reducida señal satelital (KC01), las mejores soluciones fueron ofrecidas por APPS y CSRS-PPP con el método PPP entre los servicios web. En este caso, Trimble-RTX no puede producir ninguna solución. Estos resultados demuestran los beneficios de la multiconstelación GNSS en las áreas con visibilidad satelital limitada gracias al incremento del número de medidas.

 

 

References

Abd-Elazeem, M., Farah, A. & Farrag, F. A. (2011). Assessment study of using online (CSRS) GPS-PPP Service for mapping applications in Egypt. Journal of Geodetic Science. 1(3): 233-239. DOI: 10.2478/v10156-011-0001-3

Alkan, R. M. & Ocalan, T. (2013). Usability of the GPS precise point positioning technique in marine applications. Journal of Navigation. 66(4): 579-588. DOI: http://dx.doi.org/10.1017/S0373463313000210

Alkan, R.M., Ocalan, T. & Tunalıoğlu, N. (2013). Kinematic PPP performance of low-cost GPS receiver using online post-processing service.GNSS Precise Point Positioning Workshop: Reaching Full Potential, Ottawa, Canada, 12-14 June.

Dach, R., Lutz, S., Walser, P. & Fridez, P. (2015). User Manual of the Bernese GPS Software Version 5.2. Astronomical Institute, University of Berne, November.

El-Mowafy, A. (2011). Analysis of web-based GNSS post-processing services for static and kinematic positioning using short data spans. Survey Review, 43(323): 535-549. DOI:10.1179/003962611X13117748892074

Gao, Y. & Shen, X. (2001). Improving ambiguity convergence in carrier phase-based precise point positioning. Proceedings of ION GPS-2001, Salt Lake City, USA, September 11-14.

Gao, Y. & Shen, X. (2002). A new method for carrier-phase–based precise point positioning, navigation. Journal of the Institute of Navigation, 49(2): 109-116. DOI: 10.1002/j.2161-4296.2002.tb00260.x

Hasegawa, H., & Yoshimura, T. (2007). Estimation of GPS positional accuracy under different forest conditions using signal interruption probability. Journal of Forest Research, 12: 1-7. DOI: 10.1007/s10310-006-0245-4

Hoffman-Wellenhof, B., Lichtenegger, H. & Collins, J. (2001). GPS theory and practice. Fifth revised edition. Springer Wien Newyork, ISBN: 3-211-83534-2.

Kouba, J. & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions. 5(2): 12-28. DOI: 10.1007/PL00012883

Naesset, E. (1999). Point accuracy of combined pseudo-range and carrier phase differential GPS under forest canopy. Canadian Journal of Forest Research. 29: 547-553. DOI: 10.1139/x99-021

Ocalan, T. (2015). GPS Precise Point Positioning (GPS-PPP) Technique Solutions İn GNSS Networks, PhD. Thesis, Yildiz Technical University, Graduate School of Natural and Applied Sciences, December, 2015.

Ocalan, T., Erdogan, B. & Tunalioglu, N. (2013). Analysis of web-based online services for GPS relative and precise point positioning techniques. Boletim De Ciencias Geodésicas. 19(2): 191-207. DOI: 10.1590/S1982-21702013000200003

Ocalan, T. & Alkan, R. M. (2013). Performance analysis of web-based online precise point positioning (PPP) services for marine applications. Journal of The Arab Institute of Navigation. (29): 24-29.

Pirti, A. (2005). Using GPS System near The Forest and Quality Control. Survey Review, 38 (298): 286-298. DOI:10.1179/sre.2005.38.298.286

Pirti, A. (2008). Accuracy Analysis of GPS Positioning Near the Forest Environment. Croatian Journal of Forest Engineering. 29(2): 189-201.

Rizos, C., Janssen, V., Roberts, C. & Grinter, T. (2012). Precise point positioning: is the era of differential GNSS positioning drawing to an end? FIG Working Week 2012, Rome, Italy, 6-10 May.

Tachiki, Y., Yoshimura, T., Hasegawa, H., Mita, T., Sakai, T. & Nakamura, F. (2005). Effects of polyline simplification of dynamic GPS data under forest canopy on area and perimeter estimations. Journal of Forest Research, 10: 419-427. DOI: 10.1007/s10310-005-0161-z

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. & Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research. 102(B3): 5005-5017.

How to Cite

APA

Ocalan, T., Erdogan, B., Tunalioglu, N. and Durdag, U. M. (2016). Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth Sciences Research Journal, 20(4), D1-D9. https://doi.org/10.15446/esrj.v20n4.59496

ACM

[1]
Ocalan, T., Erdogan, B., Tunalioglu, N. and Durdag, U.M. 2016. Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth Sciences Research Journal. 20, 4 (Oct. 2016), D1-D9. DOI:https://doi.org/10.15446/esrj.v20n4.59496.

ACS

(1)
Ocalan, T.; Erdogan, B.; Tunalioglu, N.; Durdag, U. M. Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth sci. res. j. 2016, 20, D1-D9.

ABNT

OCALAN, T.; ERDOGAN, B.; TUNALIOGLU, N.; DURDAG, U. M. Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth Sciences Research Journal, [S. l.], v. 20, n. 4, p. D1-D9, 2016. DOI: 10.15446/esrj.v20n4.59496. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/59496. Acesso em: 29 mar. 2024.

Chicago

Ocalan, Taylan, Bahattin Erdogan, Nursu Tunalioglu, and Utkan Mustafa Durdag. 2016. “Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment”. Earth Sciences Research Journal 20 (4):D1-D9. https://doi.org/10.15446/esrj.v20n4.59496.

Harvard

Ocalan, T., Erdogan, B., Tunalioglu, N. and Durdag, U. M. (2016) “Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment”, Earth Sciences Research Journal, 20(4), pp. D1-D9. doi: 10.15446/esrj.v20n4.59496.

IEEE

[1]
T. Ocalan, B. Erdogan, N. Tunalioglu, and U. M. Durdag, “Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment”, Earth sci. res. j., vol. 20, no. 4, pp. D1-D9, Oct. 2016.

MLA

Ocalan, T., B. Erdogan, N. Tunalioglu, and U. M. Durdag. “Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment”. Earth Sciences Research Journal, vol. 20, no. 4, Oct. 2016, pp. D1-D9, doi:10.15446/esrj.v20n4.59496.

Turabian

Ocalan, Taylan, Bahattin Erdogan, Nursu Tunalioglu, and Utkan Mustafa Durdag. “Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment”. Earth Sciences Research Journal 20, no. 4 (October 1, 2016): D1-D9. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/59496.

Vancouver

1.
Ocalan T, Erdogan B, Tunalioglu N, Durdag UM. Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth sci. res. j. [Internet]. 2016 Oct. 1 [cited 2024 Mar. 29];20(4):D1-D9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/59496

Download Citation

CrossRef Cited-by

CrossRef citations19

1. Berkant Konakoglu, Volkan Yilmaz. (2024). Evaluating the Performance of the Static PPP-AR in a Forest Environment. Journal of Surveying Engineering, 150(2) https://doi.org/10.1061/JSUED2.SUENG-1403.

2. Veli İlçi. (2019). Accuracy comparison of real-time GNSS positioning solutions: Case study of Mid-North Anatolia. Measurement, 142, p.40. https://doi.org/10.1016/j.measurement.2019.04.067.

3. Trong Tran Dinh, Dinh Huy Nguyen, Ngoc Quang Vu, Quoc long Nguyen. (2023). Crustal displacement in Vietnam using CORS data during 2018 - 2021. Earth Sciences Research Journal, 27(1), p.27. https://doi.org/10.15446/esrj.v27n1.102630.

4. Mert Gurturk, Veli Ilci. (2022). The performance evaluation of PPK and PPP-based Loosely Coupled integration in wooded and urban areas. Earth Sciences Research Journal, 26(3), p.211. https://doi.org/10.15446/esrj.v26n3.100518.

5. Gracianne Melo, Eduardo Ribeiro. (2021). Metodologia de integração de dados para mapeamento florestal na RPPN Reserva Volta Velha - Pe. Piet van der Aart, Itapoá - Santa Catarina, Brasil. Estrabão, 2, p.1. https://doi.org/10.53455/re.v2i.2.

6. Taylan Ocalan, Tarik Turk, Nursu Tunalioglu, Mert Gurturk. (2022). Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry. Earth Science Informatics, 15(4), p.2231. https://doi.org/10.1007/s12145-022-00868-7.

7. Nursu Tunalioglu, Taylan Ocalan, Ali Hasan Dogan. (2022). Precise Point Positioning with GNSS Raw Measurements from an Android Smartphone in Marine Environment Monitoring. Marine Geodesy, 45(3), p.274. https://doi.org/10.1080/01490419.2022.2027831.

8. Danyao Zhu, Luhe Wan, Wei Gao. (2019). Fusion Method Evaluation and Classification Suitability Study of Wetland Satellite Imagery. Earth Sciences Research Journal, 23(4), p.339. https://doi.org/10.15446/esrj.v23n4.84350.

9. Ömer Gökdaş, M. Tevfik Özlüdemir. (2021). Velocity estimation performance of GNSS online services (APPS and AUSPOS). Survey Review, 53(378), p.280. https://doi.org/10.1080/00396265.2020.1809233.

10. Sercan Bulbul. (2021). Investigation of Success of AUSPOS and OPUS in Different Geomagnetic Activities and Short Session Durations. Geomagnetism and Aeronomy, 61(S1), p.S143. https://doi.org/10.1134/S0016793222010030.

11. Dawid Kudas, Agnieszka Wnęk, Tadeusz Gargula. (2022). Optimisation of an Automatic Online Post-Processing Service for Static Observations as Realised in the Polish ASG-EUPOS System. Applied Sciences, 12(23), p.12174. https://doi.org/10.3390/app122312174.

12. Elena Belcore, Marco Piras, Paolo Dabove, Giovanni Massazza, Maurizio Rosso. (2023). Geographical Information Systems Theory, Applications and Management. Communications in Computer and Information Science. 1908, p.68. https://doi.org/10.1007/978-3-031-44112-7_5.

13. Khaled Mahmoud Abdel Aziz, Loutfia Elsonbaty. (2021). EFFECT OF USING DIFFERENT SATELLITE EPHEMERIDES ON GPS PPP AND POST PROCESSING TECHNIQUES. Geodesy and cartography, 47(3), p.104. https://doi.org/10.3846/gac.2021.13762.

14. Nursu Tunalioglu, Cemali Altuntas. (2022). An experimental test for detecting effective reflector height with GPS SNR data. Earth Sciences Research Journal, 26(1), p.13. https://doi.org/10.15446/esrj.v26n1.87003.

15. Gino Dardanelli, Antonino Maltese, Claudia Pipitone, Alessandro Pisciotta, Mauro Lo Brutto. (2021). NRTK, PPP or Static, That Is the Question. Testing Different Positioning Solutions for GNSS Survey. Remote Sensing, 13(7), p.1406. https://doi.org/10.3390/rs13071406.

16. Jintao Lei, Fei Li, Shengkai Zhang, Chi Xiao, Surui Xie, Hao Ke, Qingchuan Zhang, Wenhao Li. (2018). Ocean Tides Observed from A GPS Receiver on Floating Sea Ice Near Chinese Zhongshan Station, Antarctica. Marine Geodesy, 41(4), p.353. https://doi.org/10.1080/01490419.2018.1454370.

17. Gracianne Melo, Eduardo Ribeiro. (2021). Proposta metodológica de integração de dados para mapeamento florestal na RPPN Reserva Volta Velha - Pe. Piet van der Aart – Itapoá (Santa Catarina). Estrabão, 2, p.1. https://doi.org/10.53455/re.v2i.9.

18. Berkant KONAKOĞLU, Serhat ŞENSES. (2023). Hassas Nokta Konumlama (PPP) Tekniğinin Ağaçlık Alanlardaki Konum Belirleme Performansının CSRS-PPP Yazılımı Kullanılarak İncelenmesi. Afyon Kocatepe University Journal of Sciences and Engineering, 23(3), p.730. https://doi.org/10.35414/akufemubid.1254856.

19. B. Erdogan, F. Karlitepe, T. Ocalan, N. Tunalioglu. (2018). Performance analysis of Real Time PPP for transit of Mercury. Measurement, 129, p.358. https://doi.org/10.1016/j.measurement.2018.07.050.

Dimensions

PlumX

Article abstract page views

863

Downloads

Download data is not yet available.