Published

2018-10-01

Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code

Inversión de onda completa en el campo de frecuencia y tiempo del modelo de velocidad en imagenes sísmicas: el código Matlab FWISIMAT

DOI:

https://doi.org/10.15446/esrj.v22n4.59640

Keywords:

Seismic Imaging, Full-Waveform Inversion, Acoustic Wave Equation, Gaussian Smoother, Marmousi Velocity Model. (en)
Imagen sísmica, Inversión de Onda Completa, Ecuación de Onda Acústica, Modelo de Velocidad Marmousi, Desenfoque Gausiano. (es)

Downloads

Authors

  • Sagar Singh Department of Earth Sciences, Indian Institute of Technology Roorkee, 247667, Roorkee, India.
  • Ali Ismet Kanli Geophysical Engineer
  • Sagarika Mukhopadhyay Department of Earth Sciences, Indian Institute of Technology Roorkee, 247667, Roorkee, India

This paper investigates the capability of acoustic Full Waveform Inversion (FWI) in building Marmousi velocity model, in time and frequency domain. FWI is an iterative minimization of misfit between observed and calculated data which is generally solved in three segments: forward modeling, which numerically solves the wave equation with an initial model, gradient computation of the objective function, and updating the model parameters, with a valid optimization method. FWI codes developed in MATLAB herein FWISIMAT (Full Waveform Inversion in Seismic Imaging using MATLAB) are successfully implemented using the Marmousi velocity model as the true model. An initial model is obtained by smoothing the true model to initiate FWI procedure. Smoothing ensures an adequate starting model for FWI, as the FWI procedure is known to be sensitive on the starting model. The final model is compared with the true model to review the number of recovered velocities. FWI codes developed in MATLAB herein FWISIMAT (Full Waveform Inversion in Seismic Imaging using MATLAB) are successfully implemented usingMarmousi velocity model astrue model. An initial model is derived from smoothing the true model to initiate FWI procedure. Smoothing ensures an adequate starting model for FWI, as the FWI procedure is known to be sensitive onstarting model. The final model is compared with the true model to review theamount of recovered velocities. 

Este trabajo investiga la capacidad de la Inversión de Onda Completa (FWI, del inglés Full Waveform inversion) en la construcción del modelo de velocidad Marmousi, en el campo de frecuencia y tiempo. La Inversión de Onda Completa es una minimización repetitiva compleja entre la información observada y la calculada que generalmente se resuelve en tres segmentos: modelado directo, que numéricamente resuelve la ecuación de onda con un modelo inicial; la computación de gradiente de la función objetiva, y la actualización de los parámetros del modelo, con un método de optimización válido. Los códigos de la Inversión de Onda Completa desarrollados en Matlab (FWISIMAT) fueron implementados exitosamente con el modelo de velocidad Marmousi como modelo verdadero. Se obtuvo un modelo inicial tras igualar el modelo verdadero para iniciar el procedimiento de Inversión de Onda Completa. La igualación asegura un modelo inicial adecuado para la Inversión de Onda Completa, mientras que este procedimiento se reconoce por ser sensitivo al modelo inicial. El modelo final se compara con el modelo verdadero para revisar el número de velocidades recuperadas. 

References

Broyden, C. G. (1970). The Convergence of a Class of Double- Rank Minimization Algorithms. 2. The New Algorithm. Journal of the Institute of Mathematics and its Applications, 10, 222-231.

Chabert, A. (2010). Seismic imaging of the sedimentary and crustal structure of the hatton basin on the Irish Atlantic margin. Ph.D. Thesis, University College Dublin, Ireland.

Clayton, R. & Engquist, B. (1977). Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bulletin of the Seismological Society of America, 67(6), 1529-1540.

Dai, Y. H. & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1), 177-182.

Demanet, L. (2015). Waves and Imaging, Class Notes. http://math.mit.edu/icg/resources/notes325.pdf (last accessed April 2016).

Erlangga, Y. A. (2008). Advances in Iterative Methods and Preconditioners for the Helmholtz Equation. Archives of Computational Methods in Engineering, 15(1), 37-66.

Fletcher, R. (1970). A New Approach to Variable Metric Algorithms. Computer Journal, 13(3), 317-322.

Goldfarb, D. (1970). A Family of Variable Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23-26.

Hager, W. W., & Zhang, H. (2006). A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization, 2(6), 35-58.

Hu, W., Abubakar, A. & Habashy, T. M. (2009). Simultaneous Multifrequency Inversion of Full-waveform Seismic Data. Geophysics, 74(2), 1-14.

Improta, L., Zollo, A., Herrero, Frattini, A., R., Virieux, J. & Dell’Aversana, P. (2002). Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data: application to a thrust belt. Geophysical Journal International, 151(1), 264-278.

Kanli, A. I. (2009). Initial Velocity Model Construction of Seismic Tomography in Near- surface Application. Journal of Applied Geophysics, 67(1), 52-62.

Cao, D. & Liao, W. (2013). Full Waveform Inversion of crosswell seismic data using automatic differentiation. GeoConvention Integration, Geoscience Engineering Partnership, Calgary, Canada, May, 6-12.

Ma, Y. (2010). Full waveform inversion with image-guided gradient. M.Sc. Thesis, Center for Wave Phenomena, Colorado School of Mines, Colorado, USA.

Margrave, G., Ferguson, R. & Hogan, C. (2010). Full waveform inversion with wave equation migration and well control. CREWES Research Report, 22(63), 1-20.

Margrave, G., Yedlin, M. & Innanen, K. (2011). Full waveform inversion and the inverse hessian. CREWES Research Report, 23(77), 1-13.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J. Y., Giraud, L. & Ben-Hadj-Ali, H. (2007). 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study. Geophysics, 72(5), 195-211.

Pica, A., Diet, J. P. & Tarantola, A. (1990). Nonlinear inversion of seismic reflection data in a laterally invariant medium. Geophysics, 55(3), 284-292.

Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. & Dell’Aversana, P. (2004). Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophysical Journal International, 159(3), 1032-1056.

Shanno, D. F. (1970). Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, 24(111), 647-656.

Sirgue, L. (2003). Frequency domain waveform inversion of large offset seismic data. Ph.D Thesis, l’Ecole Normale Superieure de Paris, Paris, France.

Sirgue, L. & Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69(1), 231-248.

Vigh, D. & Starr, W. (2008). 3D pre-stack plane-wave, full-waveform inversion. Geophysics, 73(5), 135-144.

Wang, M., Zhang, D., Yao, D., Qin, Q., & Xu, L. (2012). Application of Frequency-Domain Waveform Inversion Method in Marmousi Shots Data. Wuhan University Journal of Natural Sciences, 17(4), 326-330.

Wolfe, P. (1969). Convergence Conditions for Ascent Methods. SIAM Review, 11(2), 226-235.

Wolfe, P. (1971). Convergence Conditions for Ascent Methods II: Some Corrections. SIAM Review, 13(2), 185-188.

Zhang., W. & Luo, J. (2013). Full-waveform Velocity Inversion Based on the Acoustic Wave Equation. American Journal of Computational Mathematics, 3(3B), 13-20.

Zhang, W. (2009). Imaging Methods and Computations Based on the Wave Equation. Beijing, Science Press.

How to Cite

APA

Singh, S., Kanli, A. I. and Mukhopadhyay, S. (2018). Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code. Earth Sciences Research Journal, 22(4), 291–300. https://doi.org/10.15446/esrj.v22n4.59640

ACM

[1]
Singh, S., Kanli, A.I. and Mukhopadhyay, S. 2018. Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code. Earth Sciences Research Journal. 22, 4 (Oct. 2018), 291–300. DOI:https://doi.org/10.15446/esrj.v22n4.59640.

ACS

(1)
Singh, S.; Kanli, A. I.; Mukhopadhyay, S. Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code. Earth sci. res. j. 2018, 22, 291-300.

ABNT

SINGH, S.; KANLI, A. I.; MUKHOPADHYAY, S. Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code. Earth Sciences Research Journal, [S. l.], v. 22, n. 4, p. 291–300, 2018. DOI: 10.15446/esrj.v22n4.59640. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/59640. Acesso em: 10 jul. 2024.

Chicago

Singh, Sagar, Ali Ismet Kanli, and Sagarika Mukhopadhyay. 2018. “Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code”. Earth Sciences Research Journal 22 (4):291-300. https://doi.org/10.15446/esrj.v22n4.59640.

Harvard

Singh, S., Kanli, A. I. and Mukhopadhyay, S. (2018) “Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code”, Earth Sciences Research Journal, 22(4), pp. 291–300. doi: 10.15446/esrj.v22n4.59640.

IEEE

[1]
S. Singh, A. I. Kanli, and S. Mukhopadhyay, “Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code”, Earth sci. res. j., vol. 22, no. 4, pp. 291–300, Oct. 2018.

MLA

Singh, S., A. I. Kanli, and S. Mukhopadhyay. “Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code”. Earth Sciences Research Journal, vol. 22, no. 4, Oct. 2018, pp. 291-00, doi:10.15446/esrj.v22n4.59640.

Turabian

Singh, Sagar, Ali Ismet Kanli, and Sagarika Mukhopadhyay. “Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code”. Earth Sciences Research Journal 22, no. 4 (October 1, 2018): 291–300. Accessed July 10, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/59640.

Vancouver

1.
Singh S, Kanli AI, Mukhopadhyay S. Full waveform inversion in time and frequency domain of velocity modeling in seismic imaging: FWISIMAT a Matlab code. Earth sci. res. j. [Internet]. 2018 Oct. 1 [cited 2024 Jul. 10];22(4):291-300. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/59640

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Lei Hu, Wei Zhang, Tao Ma, Zhi-Bin Yao, Ben-Guo He, Wen-Fei Chang, Wen-Jing Niu, Guang-Liang Feng, Ya-Xun Xiao. (2024). A microseismic source location method considering diffraction used in tunnel engineering. Bulletin of Engineering Geology and the Environment, 83(7) https://doi.org/10.1007/s10064-024-03776-w.

2. Luisa Fernanda Torres Acelas, Ana Beatriz Ramirez Silva, Sergio Alberto Abreo Carrillo. (2022). A practical guide of the 2D acoustic full waveform inversion on synthetic land seismic data. CT&F - Ciencia, Tecnología y Futuro, 12(2), p.17. https://doi.org/10.29047/01225383.386.

3. Niloofar Alaei, Mehrdad Soleimani Monfared, Amin Roshandel Kahoo, Thomas Bohlen. (2022). Seismic Imaging of Complex Velocity Structures by 2D Pseudo-Viscoelastic Time-Domain Full-Waveform Inversion. Applied Sciences, 12(15), p.7741. https://doi.org/10.3390/app12157741.

Dimensions

PlumX

Article abstract page views

1977

Downloads

Download data is not yet available.