Published
The model of direct relative orientation with seven constraints for geological landslides measurement and 3D reconstruction
DOI:
https://doi.org/10.15446/esrj.v20n4.60211Keywords:
3D, high-precision, relative orientation, space position, additional constraints, imaging pair, alta precisión, orientación relativa, posición espacial, restricciones adicionales, sondeo estéreo. (en)Downloads
With the development of computer vision and high-precision 3D model reconstruction, used for the measurement and 3D reconstruction of the geological landslides, acquiring a high-precision relative orientation basing multiple images is crucial and the key point to ensuring and improving the accuracy of 3D model and space position. Currently, the conventional relative orientation model includes five independent parameters. For the linear relative orientation model, there are nine parameters to construct the linear space geometric relationship between the imaging and space point. To eliminate the impact of more parameterization and improve the accuracy and stability of solved parameters for the conventional direct relative orientation model, a new relative orientation model with seven constraints is proposed and validated in this paper. The additional constraints are derived from the orthogonal property of the rotation matrix of a stereo imaging pair and associated with the least squares adjustment to obtain a high-precision result of the relative orientation. Through the accuracy assessment using space position, it is revealed that the new proposed model is more advantage for the conventional type of direct relative orientation, especially at 3D model reconstruction and close range photogrammetric and applications for the geological landslides measurement.
El modelo de orientación relativa directa con siete restricciones para la medida de deslizamientos de tierra y reconstrucción tridimensional
Resumen
Con el desarrollo del entorno computacional y la alta precisión del modelo de reconstrucción tridimensional, utilizados para la medida y reconstrucción de desprendimientos geológicos, es crucial la obtención de la orientación relativa de alta precisión basada en imágenes múltiples y es el punto clave para asegurar y mejorar la exactitud del modelo 3D y la posición espacial. Actualmente el modelo de orientación relativa incluye cinco parámetros independientes. En el modelo linear de orientación relativa hay nueve parámetros para construir la relación geométrica espacial linear entre el sondeo y la posición espacial. Para eliminar el impacto de más parametrización y mejorar la exactitud y la estabilidad de los parámetros resueltos el modelo de orientación relativa convencional, este artículo propone y valida un nuevo modelo de orientación relativa con siete restricciones. Las restricciones adicionales se derivan de la propiedad ortogonal de la matriz de rotación de la imagen estéreo y se asocian con el ajuste de los cuadrados mínimos para obtener un resultado de alta precisión de la orientación relativa. Al medir la exactitud con la posición espacial se revela que el nuevo modelo propuesto tiene más ventajas que aquel de orientación relativa directa, especialmente en el modelo de reconstrucción 3D y en las aplicaciones fotográmetricas de rango cercano para la evaluación de desprendimientos geológicos.
References
Duane, C. B. (1971). Close-range camera calibration. Photogrammetric Engineering, 37, 855-866.
Faugeras, O. (1993). Three-dimensional computer vision: a geometric viewpoint. The MIT press, Cambridge, MA, USA.
Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press. New York, USA.
Horn, B. K. P. (1990). Relative orientation. International Journal of Computer Vision,, 4(1): 59-78.
Läbe, T, & Förstner, W. (2006). Automatic relative orientation of images. Proceedings of the 5th Turkish-German Joint Geodetic Days, 29, 31-39.
Li, Z., Liu, J., & Tang, X. (2007). A closed-form solution to 3D reconstruction of piecewise planar objects from single images. IEEE Conference on Computer Vision and Pattern Recognition, 2007, 1-6. DOI: 10.1109/CVPR.2007.383158
Longuet-Higgins, H. C. (1987). A computer algorithm for reconstructing a scene from two projections. In: Fischler, M. A. & Firschein, O. (Eds.), Readings in Computer Vision: Issues, Problems, Principles, and Paradigms (61-67). San Francisco, USA.
Ma, Y., Soatto, S., Kosecka, J., & Sastry, S.S. (2004). An Invitation to 3-D Vision: From Images to Geometric Models. Springer-Verlag, New York, USA.
Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry. John Wiley & Sons Inc.
Nistér, D. (2004). An efficient solution to the five-point relative pose problem. Pattern Analysis and Machine Intelligence, IEEE Transactions, 26(6): 756-770.
Pan, H. (1999). A direct closed-form solution to general relative orientation of two stereo views. Digital Signal Processing, 9(3), 195-221. DOI: 10.1006/dspr.1999.0344
Philip, J. (1996). A Non‐Iterative Algorithm for Determining All Essential Matrices Corresponding to Five Point Pairs. The Photogrammetric Record, 15(88): 589-599. DOI: 10.1111/0031-868X.00066
Stewenius, H., Engels, C., & Nistér, D. (2006). Recent developments on direct relative orientation.. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4), 284-294. DOI: 10.1016/j.isprsjprs.2006.03.005
Tang, L., & Heipke, C. (1994). Approach for automatic relative orientation. In: Proceedings of Optical 3D Measurement Techniques II: Applications in Inspection, Quality Control, and Robotics. International Society for Optics and Photonics, 347-354.
Taylor, C. J., & Kriegman, D. J. (1995). Structure and motion from line segments in multiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11), 1021–1032. DOI: 10.1109/34.473228
Werner, T. (2003). Constraint on five points in two images. Computer Vision and Pattern Recognition, 2. DOI: 10.1109/CVPR.2003.1211471
Zhang, Y., Huang, X., Hu, X., Wan, F., & Lin, L. (2011). Direct relative orientation with four independent constraints. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6): 809-817. DOI: http://dx.doi.org/10.1016/j.isprsjprs.2011.09.006
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2017 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.