Published

2017-01-01

Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia

Correlaciones empíricas para la determinación de la presión de expansión de arcillas expansivas en Barranquilla, Colombia

DOI:

https://doi.org/10.15446/esrj.v21n1.60226

Keywords:

Expansive Clays, Swell Pressure, Atterberg Limits, Water Content (en)
Arcillas Expansivas, Presión de expansión, Límites de Atterberg, Contenido de Humedad (es)

Downloads

Authors

Swelling behavior of clays is of great importance for numerous engineering applications due to the prevalence of expansive clays around the world. Expansive clays are present in Mexico City, United States, Australia, Africa and South America, among others. In some cases, these types of clays could present swell pressure values greater than 400 kPa. In this technical note, correlation equations are developed to estimate the swell pressure of clays using laboratory tests performed on swelling clays in the city of Barranquilla, Colombia. Correlations are based on Atterberg limits and water content among other soil properties. Equations with statistically significant coefficients were selected and compared with equations found in the literature. Developed correlations evidenced that swell pressure decays quickly as water content increases. It was found that for the studied soils, Atterberg Limits did not present statistical significance in the estimation of swell pressure.

El comportamiento expansivo de las arcillas presenta vital importancia alrededor del mundo, ya que este tipo de arcillas se encuentras en diversas y extensas zonas del planeta. Arcillas con este tipo de comportamiento se encuentran presentes en diversas regiones del mundo como la ciudad de México, los Estados Unidos, Australia, algunas zonas de África y Sudamérica, entre otras. Este tipo de arcillas pueden presentar en algunos casos presiones de expansión superiores a los 400 kPa. En la presente nota técnica se desarrollan correlaciones para estimar la presión de expansión de arcillas con base en ensayos de laboratorio practicados a arcillas con comportamiento expansivo presentes en la ciudad de Barranquilla, Colombia. Las correlaciones desarrolladas se basan en los límites de Atterberg y contenido de humedad, entre otras propiedades de los suelos. Se seleccionaron aquellas ecuaciones que presentaban coeficientes estadísticamente significativos y se realizaron comparaciones con correlaciones presentes en la literatura. Las correlaciones mostraron que la presión de expansión decae rápidamente a medida que el contenido de humedad aumenta. Además, se observó que para los suelos estudiados los límites de Atterberg no son estadísticamente significativos para la estimación de la presión de expansión.

References

Al-Rawas, A. A., & Goosen, M. F. (2006). Expansive soils: recent advances in characterization and treatment. Taylor and Francis.

Angulo, E. (2014). Defensor exige medidas urgentes para la ladera suroccidental. Diario El Heraldo. [online] Available at: http://www. elheraldo.co/local/defensor-exige-medidas-urgentes-para-la- ladera-suroccidental-139845 [Accessed 15 Mar. 2017].

Das, B. (2015). Principles of Foundation Engineering. Cengage learning.

Day, R. W. (1991). Expansion of compacted gravelly clay. Journal of Geotechnical Engineering, 117(6), 968-972.

Day, R. W. (1992). Swell versus saturation for compacted clay. Journal of Geotechnical Engineering, 118(8), 1272-1278.

Erguler, Z. A., & Ulusay, R. (2003). A simple test and predictive models for assessing swell potential of Ankara (Turkey) Clay. Engineering Geology, 67(3), 331-352.

Erzin, Y., & Erol, O. (2004). Correlations for quick prediction of swell pressures. Electronic Journal of Geotechnical Engineering, 9, 1.

Feferbaum, S. & Beltrán, L. (1974). Arcillas Expansivas en Colombia. Segundo Simposio Colombiano de Geotecnia e Ingeniería Geológica. Sociedad Colombiana de Geotecnia.

Geotecnología Ltda. (2006). Propuesta General Definitiva del Plan de Manejo y Obras del Plan Maestro para la Estabilización Geotécnica de las Laderas del Barrio Campoalegre en Barranquilla. Barranquilla: Jaime Suárez Diaz.

Guardo, J. (2011). La problemática geotécnica del suroccidente de Barranquilla. Revista Científica Ingeniería y Desarrollo, (8), 119-129.

Hensen, E. J., & Smith, B. (2002). Why clays swell. The Journal of Physical Chemistry B, 106(49), 12664-12667.

Ingeominas (2011). Zonificación de amenaza por movimientos en masa de las laderas occidentales de Barranquilla, departamento del Atlántico. Bogotá, grupo de edición y diagramación de información de Ingeominas.

Kayabali, K., & Demir, S. (2011). Measurement of swelling pressure: direct method versus indirect methods. Canadian Geotechnical Journal, 48(3), 354-364.

Komornik, A., & David, D. (1969). Prediction of swelling pressure of clays. Journal of the Soil Mechanics and Foundations Division, 95.

Moreno, N. (2013). Zonificación y Caracterización Geotécnica de los Suelos de Barranquilla. Fase 1.

Murthy, D. S. (2011). Advanced Foundation Engineering. CBS Publishers & Distributors, New Delhi, Bangalore, India.

Nayak, N. V. (1985). Foundation design manual. Dhanpat Rai and Sons pub.

Phanikumar, B. R. (2006). Prediction of swelling characteristics with free swell index. Expansive Soils: Recent Advances in Characterization and Treatment. Taylor and Francis Group, 173-184.

Rodríguez, E. A. (2014). Evaluación del Comportamiento Geomecánico de Arcillas en el Sector de Campoalegre–Ciudad de Barranquilla (Doctoral dissertation, Universidad Nacional de Colombia).

Schneider, G. L., & Poor, A. R. (1974). The prediction of soil heave and swell pressures developed by an expansive clay. University of Texas.

Sridharan, A. (2009). Critical evaluation of determining swelling pressure by swell-load method and constant volume method.

Sridharan, A., & Gurtug, Y. (2004). Swelling behavior of compacted fine-grained soils. Engineering Geology, 72(1), 9-18.

Thompson, R. W., Perko, H. A., & Rethamel, W. D. (2006). Comparison of constant volume swell pressure and odometer load-back pressure. In Unsaturated Soils 2006 (pp. 1787-1798). ASCE.

How to Cite

APA

Cantillo, V., Mercado, V. and Pájaro, C. (2017). Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia. Earth Sciences Research Journal, 21(1), 45–49. https://doi.org/10.15446/esrj.v21n1.60226

ACM

[1]
Cantillo, V., Mercado, V. and Pájaro, C. 2017. Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia. Earth Sciences Research Journal. 21, 1 (Jan. 2017), 45–49. DOI:https://doi.org/10.15446/esrj.v21n1.60226.

ACS

(1)
Cantillo, V.; Mercado, V.; Pájaro, C. Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia. Earth sci. res. j. 2017, 21, 45-49.

ABNT

CANTILLO, V.; MERCADO, V.; PÁJARO, C. Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia. Earth Sciences Research Journal, [S. l.], v. 21, n. 1, p. 45–49, 2017. DOI: 10.15446/esrj.v21n1.60226. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/60226. Acesso em: 15 jan. 2025.

Chicago

Cantillo, Victor, Vicente Mercado, and César Pájaro. 2017. “Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia”. Earth Sciences Research Journal 21 (1):45-49. https://doi.org/10.15446/esrj.v21n1.60226.

Harvard

Cantillo, V., Mercado, V. and Pájaro, C. (2017) “Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia”, Earth Sciences Research Journal, 21(1), pp. 45–49. doi: 10.15446/esrj.v21n1.60226.

IEEE

[1]
V. Cantillo, V. Mercado, and C. Pájaro, “Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia”, Earth sci. res. j., vol. 21, no. 1, pp. 45–49, Jan. 2017.

MLA

Cantillo, V., V. Mercado, and C. Pájaro. “Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia”. Earth Sciences Research Journal, vol. 21, no. 1, Jan. 2017, pp. 45-49, doi:10.15446/esrj.v21n1.60226.

Turabian

Cantillo, Victor, Vicente Mercado, and César Pájaro. “Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia”. Earth Sciences Research Journal 21, no. 1 (January 1, 2017): 45–49. Accessed January 15, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/60226.

Vancouver

1.
Cantillo V, Mercado V, Pájaro C. Empirical Correlations for the Swelling Pressure of Expansive Clays in the City of Barranquilla, Colombia. Earth sci. res. j. [Internet]. 2017 Jan. 1 [cited 2025 Jan. 15];21(1):45-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/60226

Download Citation

CrossRef Cited-by

CrossRef citations10

1. Qihang Huang, Shahid Azam. (2023). Modeling of Weather-Induced Volumetric Changes in Cracked Expansive Clays. Geotechnical and Geological Engineering, 41(2), p.861. https://doi.org/10.1007/s10706-022-02310-7.

2. A Ahmad, C Lopulisa, N Juita, I Suryani. (2021). Gilgai microtopography of soil from carbonate rocks. IOP Conference Series: Earth and Environmental Science, 807(4), p.042029. https://doi.org/10.1088/1755-1315/807/4/042029.

3. Erick Omar Lopez-Montes, Jose Roberto Galaviz-Gonzalez, Maria de la Luz Perez-Rea, Eduardo Rojas Gonzalez. (2018). Comparative analysis in the determination of experimental and numerical expansion pressure of an expansive soil. 2018 XIV International Engineering Congress (CONIIN). , p.1. https://doi.org/10.1109/CONIIN.2018.8489782.

4. Zülal AKBAY ARAMA, Muhammed Selahaddin AKIN, Said Enes NURAY, İlknur DALYAN. (2020). Estimation of consistency limits of fine-grained soils via regression analysis: A special case for high and very high plastic clayey soils in Istanbul. International Advanced Researches and Engineering Journal, 4(3), p.255. https://doi.org/10.35860/iarej.735529.

5. Fazal E. Jalal, Yongfu Xu, Babak Jamhiri, Shazim Ali Memon, Andrea Graziani. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium‐Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 2020(1) https://doi.org/10.1155/2020/1510969.

6. Mohamed Farid Abbas, Tamer Yehia Elkady, Ali Abdullah Aldrees, Abdullah Ali Shaker. (2021). Impact of stress path on hydraulic and mechanical behavior of compacted Al-Qatif clay. Transportation Geotechnics, 26, p.100417. https://doi.org/10.1016/j.trgeo.2020.100417.

7. Alaa Nuri Merza, Aram Mohammed Raheem, Ibrahim Jalal Naser, Mohammed Omar Ibrahim, Najat Qader Omar. (2023). Implementing GIS and linear regression models to investigate partial building failures. Scientific Review Engineering and Environmental Sciences (SREES), 32(4), p.338. https://doi.org/10.22630/srees.4857.

8. Fazal E. Jalal, Mudassir Iqbal, Waseem Akhtar Khan, Arshad Jamal, Kennedy Onyelowe, Lekhraj. (2024). ANN-based swarm intelligence for predicting expansive soil swell pressure and compression strength. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-65547-7.

9. Ploutarchos Tzampoglou, Dimitrios Loukidis, Niki Koulermou. (2022). Seasonal Ground Movement Due to Swelling/Shrinkage of Nicosia Marl. Remote Sensing, 14(6), p.1440. https://doi.org/10.3390/rs14061440.

10. Aneke Frank Ikechukwu, Mohamed M.H. Mostafa. (2022). Swelling Pressure Prediction of Compacted Unsaturated Expansive Soils. International Journal of Engineering Research in Africa, 59, p.119. https://doi.org/10.4028/p-eq1419.

Dimensions

PlumX

Article abstract page views

769

Downloads

Download data is not yet available.