Published

2020-10-12

Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers

Evaluación del modelo variable de permeabilidad en la simulación del comportamiento sísmico de capas arenosas planas y ligeramente inclinadas

DOI:

https://doi.org/10.15446/esrj.v24n3.60654

Keywords:

Liquefaction, Variable Permeability, Numerical Simulation, Gently Sloping (en)
Licuefacción, variable de permeabilidad, simulación numérica, carga cíclica (es)

Downloads

Authors

  • Ali Ghassemi Assistant Professor, Civil Engineering Department, Qazvin Branch, Islamic Azad University, Qazvin, Iran https://orcid.org/0000-0002-3439-2634
  • S. Seyfi M.Sc. Graduate, Sharif University of Technology, Tehran, Iran
  • H. Shahir Assistant Professor, Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran

In this study, a fully coupled dynamic finite element model was employed for numerical simulation of the response of level to gently sloping saturated sand layers subjected to cyclic loading. This model utilized a critical state two-surface-plasticity constitutive model to simulate the cyclic behavior of sandy soil. Moreover, a recently proposed variable permeability function was implemented in the numerical model to reflect the effects of soil permeability variations during the liquefaction phenomenon. The numerical model was validated by simulating a number of well-documented geotechnical centrifuge tests with different relative density of sand, base acceleration time history, and surface slope of the sand layer. The obtained results confirmed that the developed model was capable of simulating the behavior of saturated sand under cyclic loading for both level and gently sloping conditions.

En este estudio se presenta un modelo parejo dinámico de los elementos finitos para la simulación numérica del nivel de respuesta de las capas de una cuesta arenosa saturada objeto de una carga cíclica. Este mecanismo utiliza un modelo constitutivo de plasticidad de dos superficies en estado crítico para simular el comportamiento cíclico de los suelos arenosos. Además, se implementó una función de permeabilidad variable recientemente propuesta en el modelo numérico para reflejar los efectos de estas variaciones durante el fenómeno de licuefacción. El modelo numérico ha sido validado al simular varias pruebas bien documentadas de centrifugación geotécnica con diferentes densidades relativas de arena, línea de tiempo de aceleración base, e inclinación superficial de la capa arenosa. Los resultados obtenidos confirman que el modelo desarrollado es capaz de simular el comportamiento de las capas arenosas bajo cargas cíclicas en condiciones planas y de ligeramente empinadas.

References

Andrianopoulos, K. I., Papadimitriou, A. G., & Bouckovalas, G. D. (2007). Use of a new bounding surface model for the analysis of earthquake-induced liquefaction phenomena. In: Proceedings, 4th International Conference on Earthquake Geotechnical Engineering.

Arulandan, K., & Sybico Jr, J. (1992). Post-liquefaction settlement of sands. In: Predictive soil mechanics: Proceedings of the Wroth Memorial Symposium held at St Catherine's College, Oxford, July, 94-110.

Arulmoli, K., Muraleetharan, K. K., Hosain, M. M., & Fruth, L. S. (1992). VELACS laboratory testing program, soil data report. The Earth Technology Corporation, Irvine, California, Report to the National Science Foundation, Washington DC.

Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99-112.

Byrne, P. M., Park, S. S., Beaty, M., Sharp, M., Gonzalez, L., & Abdoun, T. (2004). Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193-211.

Dafalias, Y. F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of engineering mechanics, 112(9), 966-987.

Dafalias, Y. F., & Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6), 622-634.

Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., & Wilson, D. (2010). Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of geotechnical and geoenvironmental engineering, 136(1), 151-164.

Dobry, R., El-Sekelly, W., & Abdoun, T. (2018). Calibration of non-linear effective stress code for seismic analysis of excess pore pressures and liquefaction in the free field. Soil Dynamics and Earthquake Engineering, 107, 374-389.

Elgamal, A., Yang, Z., & Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4), 259-271.

Finn, W. L. (1986). TARA-3: A program to compute the response of 2-D embankments and soil-structure interaction systems to seismic loadings. Department of Civil Engineering, University of British Columbia.

Hamada, M. (1999). Similitude law for liquefied-ground flow. In: Proceedings of the 7th US-Japan Workshop on Earthquake Resistant design of lifeline facilities and countermeasures against soil liquefaction, 191-205.

Jafarzadeh, F., & Yanagisawa, E. (1995). Settlement of sand models under unidirectional shaking. In: Earthquake Geotechnical Engineering (pp. 693-698).

Jeremić, B., Cheng, Z., Taiebat, M., & Dafalias, Y. (2008). Numerical simulation of fully saturated porous materials. International Journal for Numerical and Analytical Methods in Geomechanics, 32(13), 1635-1660.

Karimi, Z., & Dashti, S. (2015). Numerical simulation of earthquake induced soil liquefaction: validation against centrifuge experimental results. In: IFCEE 2015, 11-20.

Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Geotechnique, 47(2), 255-272.

Pak, A., Seyfi, S., & Ghassemi, A. (2014). Numerical investigation into the effects of geometrical and loading parameters on lateral spreading behavior of liquefied layer. Acta Geotechnica, 9(6), 1059-1071.

Prevost, J. H. (1993). DYNAFLOW: A nonlinear transient finite element analysis program. Dept. Civ. Engineering. and Op. Research.

Rahmani, A., Fare, O. G., & Pak, A. (2012). Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon. Scientia Iranica, 19(2), 179-187.

Shahir, H., Pak, A., Taiebat, M., & Jeremić, B. (2012). Evaluation of variation of permeability in liquefiable soil under earthquake loading. Computers and Geotechnics, 40, 74-88.

Shahir, H., & Pak, A. (2010). Estimating liquefaction-induced settlement of shallow foundations by numerical approach. Computers and Geotechnics, 37(3), 267-279.

Shahir, H., Mohammadi-Haji, B., & Ghassemi, A. (2014). Employing a variable permeability model in numerical simulation of saturated sand behavior under earthquake loading. Computers and Geotechnics, 55, 211-223.

Sharp, M. K., Dobry, R., & Abdoun, T. (2003). Liquefaction centrifuge modeling of sands of different permeability. Journal of geotechnical and geoenvironmental engineering, 129(12), 1083-1091.

Su, D., Li, X. S., & Xing, F. (2009). Estimation of the apparent permeability in the dynamic centrifuge tests. Geotechnical Testing Journal, 32(1), 22-30.

Taboada V. M. , and Dobry R. (1993). Experimental results of model no. p. 1 at RPI. In: K. Arulanandan and R. F. Scott, (Eds.) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, 3–18, A.A.

Taboada-Urtuzuastegui, V. M., & Dobry, R. (1998). Centrifuge modeling of earthquake-induced lateral spreading in sand. Journal of geotechnical and geoenvironmental engineering, 124(12), 1195-1206.

Taiebat, M., Shahir, H., & Pak, A. (2007). Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27(1), 60-72.

Ueng T.S., Wang Z.F., Chu M.C. and Ge L. (2015). Tests of Permeability in Saturated Sand during Liquefaction. 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand, 1-4 November 2015.

Valsamis, A. I., Bouckovalas, G. D., & Papadimitriou, A. G. (2010). Parametric investigation of lateral spreading of gently sloping liquefied ground. Soil Dynamics and Earthquake Engineering, 30(6), 490-508.

Yang, M., Barrero, A. R., & Taiebat, M. (2020). Application of a SANISAND model for numerical simulations of the LEAP 2017 experiments. In: Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading, 595-610.

Zienkiewicz, O. C., Chang, C. T., & Hinton, E. (1978). Non‐linear seismic response and liquefaction. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4), 381-404.

Zienkiewicz, O. C., & Shiomi, T. (1984). Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International journal for numerical and analytical methods in geomechanics, 8(1), 71-96.

How to Cite

APA

Ghassemi, A., Seyfi, S. and Shahir, H. (2020). Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers. Earth Sciences Research Journal, 24(3), 335–343. https://doi.org/10.15446/esrj.v24n3.60654

ACM

[1]
Ghassemi, A., Seyfi, S. and Shahir, H. 2020. Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 335–343. DOI:https://doi.org/10.15446/esrj.v24n3.60654.

ACS

(1)
Ghassemi, A.; Seyfi, S.; Shahir, H. Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers. Earth sci. res. j. 2020, 24, 335-343.

ABNT

GHASSEMI, A.; SEYFI, S.; SHAHIR, H. Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 335–343, 2020. DOI: 10.15446/esrj.v24n3.60654. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/60654. Acesso em: 27 mar. 2025.

Chicago

Ghassemi, Ali, S. Seyfi, and H. Shahir. 2020. “Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers”. Earth Sciences Research Journal 24 (3):335-43. https://doi.org/10.15446/esrj.v24n3.60654.

Harvard

Ghassemi, A., Seyfi, S. and Shahir, H. (2020) “Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers”, Earth Sciences Research Journal, 24(3), pp. 335–343. doi: 10.15446/esrj.v24n3.60654.

IEEE

[1]
A. Ghassemi, S. Seyfi, and H. Shahir, “Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers”, Earth sci. res. j., vol. 24, no. 3, pp. 335–343, Oct. 2020.

MLA

Ghassemi, A., S. Seyfi, and H. Shahir. “Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 335-43, doi:10.15446/esrj.v24n3.60654.

Turabian

Ghassemi, Ali, S. Seyfi, and H. Shahir. “Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 335–343. Accessed March 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/60654.

Vancouver

1.
Ghassemi A, Seyfi S, Shahir H. Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers. Earth sci. res. j. [Internet]. 2020 Oct. 12 [cited 2025 Mar. 27];24(3):335-43. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/60654

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Devdeep Basu, Jack Montgomery, Armin W. Stuedlein. (2022). Observations and challenges in simulating post-liquefaction settlements from centrifuge and shake table tests. Soil Dynamics and Earthquake Engineering, 153, p.107089. https://doi.org/10.1016/j.soildyn.2021.107089.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 8

Article abstract page views

280

Downloads