Published

2016-10-01

Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau

DOI:

https://doi.org/10.15446/esrj.v20n4.61632

Keywords:

Eastern margin of Qinghai–Tibet Plateau, Bouguer gravity, Long period magnetotellurics, Crustal fluid, Apparent density, Margen oriental del altiplano Qinghai-Tíbet, anomalía de Bouguer, anomalias magnetotelúricas de largo período. (en)

Downloads

Authors

  • Jun Li Faculty of Science and Natural Resources, University Malaysia Sabah 88400 Kota Kinabalu Sabah, Malaysia
  • Xuben Wang
  • Qingyan Qin
  • Gang Zhang
  • Dahu Li
  • Jun Zhou

The eastern margin of the Qinghai–Tibet Plateau (QTP) is the focus of studies on eastward lateral extrusion of the latter’s crustal material. This study aims to explore the structural response of the QTP’s eastern crust–mantle to the extrusion, and the basis for the latter’s geological structure. Data on long-period magnetotelluric sounding of cross-tectonic units and Bouguer gravity were used to determine the physical structure of the crust–mantle at the plateau’s eastern margin. The findings are as follows: (i) the apparent density structure indicates extensive presence of a low-density material in the middle–lower crusts of the Songpan and Sichuan–Yunnan blocks at the QTP’s eastern margin. On the other hand, the Yangtze cratonic block (Sichuan Basin) contains a material with a significantly higher density. To the west of the Longmenshan–Panxi tectonic zones, and along the lower crust at 40–50 km depth, is an obvious low-density zone aligned in a northeast–southwest orientation; (ii) the electrical structural model spanning Songpan block–Longmenshan tectonic zone–Yangtze block reveals three distinct electrical structural units along the cross-section bounded by the Longmenshan tectonic zone. The first is the Songpan block, which has high and low resistivity at the shallow layer and middle–lower crusts, respectively. Next is the Yangtze craton, which has low and relatively higher resistivity at the shallow layer and middle–lower crusts, respectively. Third is the Longmenshan transitional tectonic zone, whose shallow layer and deep structure are characterized by an electrical structure with a thrust nappe towards the east, and a high-conductivity material extending to the lithospheric mantle, respectively; (iii) the apparent density and electrical structures indicate that the Panxi tectonic zone has a weakened structure in the lower crust; and (iv) physical properties of the QTP’s deep structure indicate that its eastern margin may contain a middle–lower crustal fluid material with the attributes of high conductivity and low density. Its distribution is closely related to the uplift mechanism and deep seismogenic activities at the QTP’s eastern margin.

 

Estructura profunda e implicaciones geotectónicas del margen oriental del altiplano Qinghai-Tíbet 

Resumen

El margen oriental del altiplano Qinghai-Tíbet (QTP, del inglés Qinghai-Tibet Plateau) es el área de la extrusión lateral hacia el Este de material cortical. Este trabajo se enfoca en explorar la respuesta estructural de las capas superiores en el altiplano y las bases para su estructuración geológica. Se utilizó información magnetotelúrica y anomalías de Bouguer para determinar la respuesta geofísica de las capas superiores en el margen occidental del altiplano. Dentro de los principales resultados se tiene: (i) la distribución de la densidad aparente indica la presencia de material de baja densidad en las capas medias y bajas de los bloques Songpan y Sichuan-Yunnan en el Este del QTP. Por otro lado, el bloque cratónico Yangtze (en la cuenca Sichuan) contiene material con una mayor densidad. Al oeste de las zonas tectónicas Longmeshan-Panxi, y a lo largo de las capas inferiores, entre 40 y 50 kilómetros de profundidad, hay una zona de baja densidad con orientación noreste-suroeste. (ii) El modelo eléctrico que abarca el bloque Songpan, la zona tectónica Longmeshan y el bloque Yangtze, revela tres unidades a lo largo de la sección cruzada subordinada a la zona tectónica Longmenshan. La primera unidad está en el bloque Songpan, con alta resistividad en la capa superficial y baja en las capas media e inferiores. Luego aparece el cratón Yangtze, con baja resistividad en la superficie y resistividad media en las capas media e inferiores. La tercera unidad es la zona tectónica transicional de Longmenshan, cuya estructura superficial y profunda está caracterizada por una estructura eléctrica asociada a una falla de cabalgamiento hacia el Este y alta conductividad de material que se extiende hacia el manto litosférico. (iii) La densidad aparente y las estructuras eléctricas indican que la zona tectónica de Panxi está debilitada en las capas inferiores. (iv) las propiedades geofísicas de la estructura profunda del altiplano Qinghai-Tíbet muestran que su margen oriental puede contener un fluido de material en las capas bajas y medias con características de alta conductividad y baja densidad. Su distribución está interrelacionada con el mecanismo de elevación y las actividades sismogénicas profundas en el margen oriental del altiplano.


References

Adil, F., Sharma, A., & Bhat, S. (2012). Hydraulic Fracturing of CBM Wells in India Using a Unique Fracturing-Service Technology-Operational and Technological Lessons. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/153144-MS

Al-Jubori, A., Johnston, S., Boyer, C., Lambert, S. W., Bustos, O. A., Pashin, J. C., & Wray, A. (2009). Coalbed Methane: Clean Energy for the World. Oilfield Review, 21(2): 4-13.

Chen, Z. H., Wang, Y. B., Yang, J. S., Wang, X., Chen, Y., & Zhao, Q. (2009). Influencing factors on coal-bed methane production of single well: A case of Fanzhuang Block in the south part of Qinshui Basin. Acta Petrolei Sinica, 30(3), 409-416.

Cramer, D.D. 2008. Stimulating Unconventional Reservoirs: Lessons Learned, Successful Practices, Areas for Improvement. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/114172-MS

Dabbous, M. K., Reznik, A. A., Taber, J. J., & Fulton, P. F. (1974). The Permeability of Coal to Gas and Water. Society of Petroleum Engineers Journal, 14(6), 563-572. DOI: http://dx.doi.org/10.2118/4711-A

Hill, A. D., & Schechter, R. S. (2000). Fundamentals of Acid Stimulation. In Economides, M. J. & Nolte, K. G. (Eds), Reservoir Simulation, third. edition. John Wiley & Sons Ltd, England.

Hsi, C. D. (1984). Evaluation of Clay Control Additives for Matrix Acidizing Operations. Paper presented at SPE Annual Technical Conference and Exhibition, Houston, Texas, 16-19 September. DOI: 10.2118/13086-MS

Huang, X. H., Wang C. M., Wang, T. Z., & Zhang, Z. (2015). Quantification of Geological Strength Index Based on Discontinuity Volume Desity of Rock Masses. International Journal of Heat and Technology, 4(33): 255-261. DOI: 10.18280/ijht.330434

Liu, H. L., Kang, Y. S., Wang, F., & Deng, Z. (2008). Coal Cleat System Characteristics and Formation Mechanisms in the Qinshui Basin. Acta Geologica Sinica, 82(10): 1377-1381.

Ma, Z. W., & Chen, C. (2015). Research on the Overlapping Rights of Coalbed Methane in China. Environmental and Earth Sciences Research Journal, 2(1): 21-26. DOI: http://dx.doi.org/10.18280/eesrj.020105

McCabe, M. A., Robert, L. M., Blauch, M. E., Terracina, J. M., Lehman, L. V., & Bowles, B. (1999). Investigation of a New Fracturing Fluid and Conductivity Enhancement Technology on Coalbed Methane Production. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/52193-MS

Perex, D, Huidobro, E., & Avendano, J. (1998). Applications of Acid Fracturing Technique to improve Gas Production in Naturally Fractured Carbonate Formations, Veracruz Field, Mexico. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/47820-MS

Pooniwala, S.A. (2012). Stimulation Unlocks Coalbed Methane: Lessons Learned in India. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/149872-MS

Puri, R., King, G. E., & Palmer, I. D., (1991). Damage to Coal Permeability During Hydraulic Fracturing. Society of Petroleum Engineers. DOI: http://dx.doi.org/10.2118/21813-MS

Rogers, R. E., Ramurthy, K., Rodvelt, G., & Mullen, M. (2007). Coalbed Methane: Principles and Practices. Oktibbeha Publishing Company.

Schein, G. W., & Mack, D. J. (2007). Unconventional Gas. In: Economides, M. J. & Martin, T. (Eds), Modern Fracturing: Enhancing Natural Gas Production. Energy Tribune Publishing Inc., Houston, 387-398.

Tamayo, H. C., Lee, K. J., & Taylor, R. S. (2007). Enhanced Aqueous Fracturing Fluid Recovery From Tight Gas Formations: Foamed CO2 Pre-Pad Fracturing Fluid and More Effective Surfactant Systems. Journal of Canadian Petroleum Technology, 47(10). DOI: http://dx.doi.org/10.2118/08-10-33

Wang, M. S., Tang, D. Z., Wei, Y. P., Xu, W., & Leng, X. (2006). Reservoir Characteristics and Enrichment Mechanism of the Coal-Bed Gas in the North of Qinshui Basin. Petroleum Geology & Experiment, 28(5), 440-444.

Wei, C., Qin, Y., Wang, G. G. X., Fu, X., Bo, J., & Zhang, Z. (2007). Simulation study on evolution of coalbed methane reservoir in Qinshui basin, China. International Journal of Coal Geology, 72(1): 53-69. DOI: http://dx.doi.org/10.1016/j.coal.2006.12.001

How to Cite

APA

Li, J., Wang, X., Qin, Q., Zhang, G., Li, D. and Zhou, J. (2016). Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau. Earth Sciences Research Journal, 20(4), A1-A8. https://doi.org/10.15446/esrj.v20n4.61632

ACM

[1]
Li, J., Wang, X., Qin, Q., Zhang, G., Li, D. and Zhou, J. 2016. Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau. Earth Sciences Research Journal. 20, 4 (Oct. 2016), A1-A8. DOI:https://doi.org/10.15446/esrj.v20n4.61632.

ACS

(1)
Li, J.; Wang, X.; Qin, Q.; Zhang, G.; Li, D.; Zhou, J. Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau. Earth sci. res. j. 2016, 20, A1-A8.

ABNT

LI, J.; WANG, X.; QIN, Q.; ZHANG, G.; LI, D.; ZHOU, J. Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau. Earth Sciences Research Journal, [S. l.], v. 20, n. 4, p. A1-A8, 2016. DOI: 10.15446/esrj.v20n4.61632. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/61632. Acesso em: 22 jan. 2025.

Chicago

Li, Jun, Xuben Wang, Qingyan Qin, Gang Zhang, Dahu Li, and Jun Zhou. 2016. “Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau”. Earth Sciences Research Journal 20 (4):A1-A8. https://doi.org/10.15446/esrj.v20n4.61632.

Harvard

Li, J., Wang, X., Qin, Q., Zhang, G., Li, D. and Zhou, J. (2016) “Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau”, Earth Sciences Research Journal, 20(4), pp. A1-A8. doi: 10.15446/esrj.v20n4.61632.

IEEE

[1]
J. Li, X. Wang, Q. Qin, G. Zhang, D. Li, and J. Zhou, “Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau”, Earth sci. res. j., vol. 20, no. 4, pp. A1-A8, Oct. 2016.

MLA

Li, J., X. Wang, Q. Qin, G. Zhang, D. Li, and J. Zhou. “Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau”. Earth Sciences Research Journal, vol. 20, no. 4, Oct. 2016, pp. A1-A8, doi:10.15446/esrj.v20n4.61632.

Turabian

Li, Jun, Xuben Wang, Qingyan Qin, Gang Zhang, Dahu Li, and Jun Zhou. “Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau”. Earth Sciences Research Journal 20, no. 4 (October 1, 2016): A1-A8. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/61632.

Vancouver

1.
Li J, Wang X, Qin Q, Zhang G, Li D, Zhou J. Deep physical structure and geotectonic implications of the eastern margin of the Qinghai–Tibet Plateau. Earth sci. res. j. [Internet]. 2016 Oct. 1 [cited 2025 Jan. 22];20(4):A1-A8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/61632

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

737

Downloads

Download data is not yet available.