Published
Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China
Caracterización de la correlación entre los valores N del Ensayo de Penetración Estándar y el módulo cortante a pequeñas deformaciones Gmax en sedimentos de Jiangsu, China
DOI:
https://doi.org/10.15446/esrj.v25n2.62287Keywords:
Small strain shears modulus, SPT, SCPTU, Regression relation (en)modulo cortante a pequeñas deformaciones; Ensayo de Penetración Estándar; Ensayo de Penetración de Cono Sísmico; relación de regresión; (es)
Downloads
El modulo cortante a pequeñas deformaciones juega un rol fundamental en la evaluación de parámetros de respuesta en sitio. El Ensayo de Penetración Estándar (SPT) y el Ensayo de Penetración de Cono Sísmico (SCPTU), los cuales pueden rápidamente obtener la densidad y la velocidad de la onda de corte (Vs), se han utilizado poco en la estimación del modulo cortante a pequeñas deformaciones. En este estudio se realiza un acercamiento para desarrollar la relación de regresión entre los valores N del Ensayo de Penetración Estándar y el módulo cortante a pequeñas deformaciones (Gmax). Con este objetivo se utilizó la información de las investigaciones de campo del SPT y del SCPTU en las ubicaciones de la autovía Su-Xin de China, que también se usaron en el proyecto de mejoramiento del terreno. La densidad in-situ de la capa de suelo se estimó a través de muestras inalteradas tomadas por perforación. Los perfiles Vs con profundidad se obtuvieron de ubicaciones cercanas a las perforaciones. Los valores del módulo cortante a pequeñas deformaciones fueron calculados por la medición de los valores Vs y la densidad del suelo in-situ. Cerca de 50 acoples de valores SPT-N y Gmax se utilizaron en el análisis de regresión. Además, se analizaron las diferencias entre los valores medidos y los valores corregidos que fueron usados en las relaciones de regresión ajustadas. Gran parte de las correlaciones se desarrollaron con base en estudios realizados en Japón e India, donde los valores N se midieron con martillo eléctrico de 78 %, que no sería directamente aplicable para otras regiones debido a que la variación en el Ensayo de Penetración Estándar del martillo eléctrico en China es del 55 %. Una nueva correlación se ha generado a través de valores medidos en sedimentos en China. En este estudio se encontró que los valores N no corregidos y del módulo proporcionan las relaciones de regresión más adaptables cuando se comparan con los valores N corregidos y del módulo. Con las ecuaciones usadas para la arena y la arcilla, las relaciones de regresión entre los valores N corregidos y del módulo proporcionan la ecuación de sedimentos en China.
References
Abbiss, C. P. (1979). A comparison of the stiffness of the chalk at Mundford from a seismic survey and a large scale tank test. Geotechnique, 29(4), 461-468. https://doi.org/10.1680/geot.1979.29.4.461
Anbazhagan, P., & Sitharam, T. G. (2008). Mapping of average shear wave velocity for Bangalore region: a case study. Journal of Environmental & Engineering Geophysics, 13(2), 69-84. https://doi.org/10.2113/JEEG13.2.69
Anbazhagan, P., & Sitharam, T. G. (2010). Relationship between low strain shear modulus and standard penetration test N values. Geotechnical Testing Journal, 33(2), 150-164. DOI:10.1520/GTJ102278
Anderson, D. G., & Stokoe, K. H. (1978). Shear modulus: a time-dependent soil property. In: M. Silver and D. Tiedemann (Eds). Dynamic Geotechnical Testing, ASTM STP 654, 66-90. https://doi.org/10.1520/STP35672S
Andrus, R. D., Piratheepan, P., Ellis, B., S., Zhang, J., & Hsein Juang, C. (2004) Comparing liquefaction evaluation methods using penetration-Vs relationships. Soil Dynamics and Earthquake Engineering, 24(10), 713-721. https://doi.org/10.1016/j.soildyn.2004.06.001
Andrus, R. D., & Stokoe, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering 126(12), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
Ballard Jr, R.F., & McLean, F. G. (1975). Seismic field methods for in situ moduli. Final Report Army Engineer Waterways Experiment Station Vicksburg, MS.: 1.
Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(13), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
Burland, J. B. (1989). Small is beautiful: the stiffness of soils at small strains. Ninth Laurits Bjerrum Lecture. Canadian Geotechnical Journal, 26(4), 499-516.
Butcher, A. P., & Powell, J. J. M. (1996). Practical considerations for field geophysical techniques used to assess ground stiffness. Proceedings of the International Conference of Advances in Site Investigation Practice, London, England, 30-31 march 1995, Vol. 1. Thomas Telford Limited, London, pp: 701-714.
Butcher, A. P., & Powell, J. J. M. (1997). Determining the modulus of the ground from in-situ geophysical testing. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering-International Society for Soil Mechanics and Foundation Engineering, Vol. 1. AA Balkema, pp: 449-452.
Cai, G. J., Puppala, A. J., & Liu, S. Y. (2014). Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu soft clays. Engineering Geology, 171, 96-103. DOI:10.1016/j.enggeo.2013.12.012
Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., & Moss, R. E. (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(13), 1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
Clayton, C. R. I. (2011). Stiffness at small strain: research and practice. Geotechnique, 61(1), 5-37. https://doi.org/10.1680/geot.2011.61.1.5
Farrar, J. A., Nickell, J., Allen, M. G., Goble, G., & Berger, J. (1999). Energy loss in long rod penetration testing-terminus dam liquefaction investigation. Workshop on New Approaches to Liquefaction Analysis: No. FHWA-RD-99-165.
GB 50021-2001. (2009). Code for investigation of geotechnical engineering. China Architecture and Building Press, Beijing, China.
Gordon, M. A. (1997). Applications of field seismic geophysics to the measurement of geotechnical stiffness parameters. Doctoral dissertation, University of Surrey.
Hara, A., Ohta, T., Niwa, M., Tanaka, S., & Banno, T. (1974). Shear modulus and shear strength of cohesive soil. Soils and Foundations, 14(3), 1-12. https://doi.org/10.3208/sandf1972.14.3_1
Hoar, R. J., & Stokoe, K. H. (1978). Generation and measurement of shear waves in situ. Dynamic geotechnical testing, ASTM STP 654, 3-29. https://doi.org/10.1520/STP35669S
Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2), 115-130.
Imai, T., & Yoshimura, Y. (1970). Elastic wave velocity and soil properties in soft soil. Tsuchito-kiso, 18(1), 17-22.
Imai, T., & Tonouchi, K. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, pp: 57-72.
Juang, C. H., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580-589. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(580)
Kayen, R. E., Mitchell, J. K., Seed, R. B., Lodge, A., Nishio, S., & Coutinho, R. (1992). Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data. Technical Report NCEER, US National Center for Earthquake Engineering Research (NCEER), Vol. 1, No. 92-0019, pp: 177-204.
Kovacs, W. D., Salomone, L. A., & Yokel, F. Y. (1981). Energy measurement in the standard penetration test. NASA STI/Recon Technical Report N 82: 21454.
Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall, Pearson Education India.
Liao, S. S. C., Whitman, R. V. (1986). A catalog of liquefaction and non-liquefaction occurrences during earthquakes. Department of Civil Engineering, MIT.
Matthews, M. C., Clayton, C. R. I., & Own, Y. (2000). The use of field geophysical techniques to determine geotechnical stiffness parameters. Proceedings of the ICE-Geotechnical Engineering, 143(1), 31-42.
Motulsky, H. (2004). Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford University Press.
Ohba, S., & Toriumi, I. (1970). Dynamic response characteristics of Osaka Plain. Proceedings of the annual meeting AIJ, Japan.
Ohsaki, Y., & Iwasaki, R. (1973). On dynamic shear moduli and Poisson's ratios of soil deposits. Soils and Foundations, 13(4), 61-73. https://doi.org/10.3208/sandf1972.13.4_61
Ohta, T., Hara, A., Niwa, M., & Sakano, T. (1972). Elastic shear moduli as estimated from N-value. Proceedings 7th Ann. Convention of Japan Society of Soil Mechanics and Foundation Engineering, pp: 265-268.
Ohta, Y., & Goto, N. (1976). Estimation of S-wave velocity in terms of characteristic indices of soil. Butsuri―Tanko, 29(4), 34-41.
Pearce, J. T., & Baldwin, J. N. (2005). Liquefaction susceptibility mapping St. Louis, Missouri and Illinois. Final Technical Report, William Lettis and Associates.
Robertson, P. K., Woeller, D. J., & Finn, W. D. L. (1992). Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29(4), 686-695. https://doi.org/10.1139/t92-075
Robertson, P. K., & Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459. http://dx.doi.org/10.1139/t98-017
Schmertmann, J. H., & Palacios, A. (1979). Energy dynamics of SPT. Journal of the Geotechnical Engineering Division, 105(9), 909-926.
Seed, H. B., & Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes. Vol. 5, Berkeley^ eCA CA: Earthquake Engineering Research Institute, California.
Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
Seed, H. B., Wong, R.T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering, 112(12), 1016-1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
Sivrikaya, O., & Togrol, E. (2006). Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey. Engineering geology, 86(1), 52-69. https://doi.org/10.1016/j.enggeo.2006.05.002
Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425
Sully, J. P., & Campanella, R. G. (1995). Evaluation of in situ anisotropy from crosshole and downhole shear wave velocity measurements. Geotechnique, 45(2), 267-238. https://doi.org/10.1680/geot.1995.45.2.267
Sykora, D. W. (1987). Creation of a data base of seismic shear wave velocities for correlation analysis. US Army Engineer Waterways Experiment Station.
Woods, R. D. (1994). Borehole methods in shallow seismic exploration. Geophysical Characterization of Sites, Oxford and IBH Publishing, New Delhi, pp: 91-100.
Yilmaz, I., & Bagci, A. (2006). Soil liquefaction susceptibility and hazard mapping in the residential area of Kutahya (Turkey). Environmental Geology 49(5), 708-719. https://doi.org/10.1007/s00254-005-0112-1
Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. DOI:10.1061/(ASCE)1090-0241(2001)127:10(817)
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2021 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.