Published

2021-07-19

Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China

Caracterización de la correlación entre los valores N del Ensayo de Penetración Estándar y el módulo cortante a pequeñas deformaciones Gmax en sedimentos de Jiangsu, China

DOI:

https://doi.org/10.15446/esrj.v25n2.62287

Keywords:

Small strain shears modulus, SPT, SCPTU, Regression relation (en)
modulo cortante a pequeñas deformaciones; Ensayo de Penetración Estándar; Ensayo de Penetración de Cono Sísmico; relación de regresión; (es)

Downloads

Authors

  • Ya Chu Southeast UniversityMissouri University of science and technology
  • Songyu Liu Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China 210096
  • Guojun Cai Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China 210096
Small strain shear modulus plays a fundamental role in the evaluation of site response parameters. Only few authors used measured density and shear wave velocity (Vs) to estimate small strain shear modulus. In this study, an attempt has been made to develop the regression relationship between standard penetration test (SPT) N values and the small strain shear modulus (Gmax). For this purpose, field investigations SPT and seismic piezocone penetration test (SCPTU) data from locations in Su-Xin Expressway of China, have been used, which were also used for ground improvement project. The in situ density of soil layer was estimated using undisturbed soil samples from the boreholes. The Vs profiles with depth were obtained for the locations close to the boreholes. The values for small strain shear modulus have been calculated by measured Vs and in situ soil density. About 50 pairs of SPT-N and Gmax values were used for regression analysis. The differences between measured and corrected values which were used in fitted regression relations were analyzed. Most of the existing correlations were developed based on the studies carried out in Japan and in India, where N values are measured with hammer energy of 78%, which may not be directly applicable for other regions because of the variation in SPT hammer energy which in China is about 55%. A new correlation has been generated using the measured values in silts of China. From this study, it is found that uncorrected values of N and modulus gives the best fit regression relations when compared to corrected N and corrected modulus values. With most equation was used for sand and clay, the regression relations between corrected values of N and modulus gives the equation of silts in China.

El modulo cortante a pequeñas deformaciones juega un rol fundamental en la evaluación de parámetros de respuesta en sitio. El Ensayo de Penetración Estándar (SPT) y el Ensayo de Penetración de Cono Sísmico (SCPTU), los cuales pueden rápidamente obtener la densidad y la velocidad de la onda de corte (Vs), se han utilizado poco en la estimación del modulo cortante a pequeñas deformaciones. En este estudio se realiza un acercamiento para desarrollar la relación de regresión entre los valores N del Ensayo de Penetración Estándar y el módulo cortante a pequeñas deformaciones (Gmax). Con este objetivo se utilizó la información de las investigaciones de campo del SPT y del SCPTU en las ubicaciones de la autovía Su-Xin de China, que también se usaron en el proyecto de mejoramiento del terreno. La densidad in-situ de la capa de suelo se estimó a través de muestras inalteradas tomadas por perforación. Los perfiles Vs con profundidad se obtuvieron de ubicaciones cercanas a las perforaciones. Los valores del módulo cortante a pequeñas deformaciones fueron calculados por la medición de los valores Vs y la densidad del suelo in-situ. Cerca de 50 acoples de valores SPT-N y Gmax se utilizaron en el análisis de regresión. Además, se analizaron las diferencias entre los valores medidos y los valores corregidos que fueron usados en las relaciones de regresión ajustadas. Gran parte de las correlaciones se desarrollaron con base en estudios realizados en Japón e India, donde los valores N se midieron con martillo eléctrico de 78 %, que no sería directamente aplicable para otras regiones debido a que la variación en el Ensayo de Penetración Estándar del martillo eléctrico en China es del 55 %. Una nueva correlación se ha generado a través de valores medidos en sedimentos en China. En este estudio se encontró que los valores N no corregidos y del módulo proporcionan las relaciones de regresión más adaptables cuando se comparan con los valores N corregidos y del módulo. Con las ecuaciones usadas para la arena y la arcilla, las relaciones de regresión entre los valores N corregidos y del módulo proporcionan la ecuación de sedimentos en China.

References

Abbiss, C. P. (1979). A comparison of the stiffness of the chalk at Mundford from a seismic survey and a large scale tank test. Geotechnique, 29(4), 461-468. https://doi.org/10.1680/geot.1979.29.4.461

Anbazhagan, P., & Sitharam, T. G. (2008). Mapping of average shear wave velocity for Bangalore region: a case study. Journal of Environmental & Engineering Geophysics, 13(2), 69-84. https://doi.org/10.2113/JEEG13.2.69

Anbazhagan, P., & Sitharam, T. G. (2010). Relationship between low strain shear modulus and standard penetration test N values. Geotechnical Testing Journal, 33(2), 150-164. DOI:10.1520/GTJ102278

Anderson, D. G., & Stokoe, K. H. (1978). Shear modulus: a time-dependent soil property. In: M. Silver and D. Tiedemann (Eds). Dynamic Geotechnical Testing, ASTM STP 654, 66-90. https://doi.org/10.1520/STP35672S

Andrus, R. D., Piratheepan, P., Ellis, B., S., Zhang, J., & Hsein Juang, C. (2004) Comparing liquefaction evaluation methods using penetration-Vs relationships. Soil Dynamics and Earthquake Engineering, 24(10), 713-721. https://doi.org/10.1016/j.soildyn.2004.06.001

Andrus, R. D., & Stokoe, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering 126(12), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

Ballard Jr, R.F., & McLean, F. G. (1975). Seismic field methods for in situ moduli. Final Report Army Engineer Waterways Experiment Station Vicksburg, MS.: 1.

Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(13), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)

Burland, J. B. (1989). Small is beautiful: the stiffness of soils at small strains. Ninth Laurits Bjerrum Lecture. Canadian Geotechnical Journal, 26(4), 499-516.

Butcher, A. P., & Powell, J. J. M. (1996). Practical considerations for field geophysical techniques used to assess ground stiffness. Proceedings of the International Conference of Advances in Site Investigation Practice, London, England, 30-31 march 1995, Vol. 1. Thomas Telford Limited, London, pp: 701-714.

Butcher, A. P., & Powell, J. J. M. (1997). Determining the modulus of the ground from in-situ geophysical testing. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering-International Society for Soil Mechanics and Foundation Engineering, Vol. 1. AA Balkema, pp: 449-452.

Cai, G. J., Puppala, A. J., & Liu, S. Y. (2014). Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu soft clays. Engineering Geology, 171, 96-103. DOI:10.1016/j.enggeo.2013.12.012

Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., & Moss, R. E. (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(13), 1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)

Clayton, C. R. I. (2011). Stiffness at small strain: research and practice. Geotechnique, 61(1), 5-37. https://doi.org/10.1680/geot.2011.61.1.5

Farrar, J. A., Nickell, J., Allen, M. G., Goble, G., & Berger, J. (1999). Energy loss in long rod penetration testing-terminus dam liquefaction investigation. Workshop on New Approaches to Liquefaction Analysis: No. FHWA-RD-99-165.

GB 50021-2001. (2009). Code for investigation of geotechnical engineering. China Architecture and Building Press, Beijing, China.

Gordon, M. A. (1997). Applications of field seismic geophysics to the measurement of geotechnical stiffness parameters. Doctoral dissertation, University of Surrey.

Hara, A., Ohta, T., Niwa, M., Tanaka, S., & Banno, T. (1974). Shear modulus and shear strength of cohesive soil. Soils and Foundations, 14(3), 1-12. https://doi.org/10.3208/sandf1972.14.3_1

Hoar, R. J., & Stokoe, K. H. (1978). Generation and measurement of shear waves in situ. Dynamic geotechnical testing, ASTM STP 654, 3-29. https://doi.org/10.1520/STP35669S

Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2), 115-130.

Imai, T., & Yoshimura, Y. (1970). Elastic wave velocity and soil properties in soft soil. Tsuchito-kiso, 18(1), 17-22.

Imai, T., & Tonouchi, K. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, pp: 57-72.

Juang, C. H., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580-589. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(580)

Kayen, R. E., Mitchell, J. K., Seed, R. B., Lodge, A., Nishio, S., & Coutinho, R. (1992). Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data. Technical Report NCEER, US National Center for Earthquake Engineering Research (NCEER), Vol. 1, No. 92-0019, pp: 177-204.

Kovacs, W. D., Salomone, L. A., & Yokel, F. Y. (1981). Energy measurement in the standard penetration test. NASA STI/Recon Technical Report N 82: 21454.

Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall, Pearson Education India.

Liao, S. S. C., Whitman, R. V. (1986). A catalog of liquefaction and non-liquefaction occurrences during earthquakes. Department of Civil Engineering, MIT.

Matthews, M. C., Clayton, C. R. I., & Own, Y. (2000). The use of field geophysical techniques to determine geotechnical stiffness parameters. Proceedings of the ICE-Geotechnical Engineering, 143(1), 31-42.

Motulsky, H. (2004). Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford University Press.

Ohba, S., & Toriumi, I. (1970). Dynamic response characteristics of Osaka Plain. Proceedings of the annual meeting AIJ, Japan.

Ohsaki, Y., & Iwasaki, R. (1973). On dynamic shear moduli and Poisson's ratios of soil deposits. Soils and Foundations, 13(4), 61-73. https://doi.org/10.3208/sandf1972.13.4_61

Ohta, T., Hara, A., Niwa, M., & Sakano, T. (1972). Elastic shear moduli as estimated from N-value. Proceedings 7th Ann. Convention of Japan Society of Soil Mechanics and Foundation Engineering, pp: 265-268.

Ohta, Y., & Goto, N. (1976). Estimation of S-wave velocity in terms of characteristic indices of soil. Butsuri―Tanko, 29(4), 34-41.

Pearce, J. T., & Baldwin, J. N. (2005). Liquefaction susceptibility mapping St. Louis, Missouri and Illinois. Final Technical Report, William Lettis and Associates.

Robertson, P. K., Woeller, D. J., & Finn, W. D. L. (1992). Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29(4), 686-695. https://doi.org/10.1139/t92-075

Robertson, P. K., & Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459. http://dx.doi.org/10.1139/t98-017

Schmertmann, J. H., & Palacios, A. (1979). Energy dynamics of SPT. Journal of the Geotechnical Engineering Division, 105(9), 909-926.

Seed, H. B., & Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes. Vol. 5, Berkeley^ eCA CA: Earthquake Engineering Research Institute, California.

Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)

Seed, H. B., Wong, R.T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering, 112(12), 1016-1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)

Sivrikaya, O., & Togrol, E. (2006). Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey. Engineering geology, 86(1), 52-69. https://doi.org/10.1016/j.enggeo.2006.05.002

Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425

Sully, J. P., & Campanella, R. G. (1995). Evaluation of in situ anisotropy from crosshole and downhole shear wave velocity measurements. Geotechnique, 45(2), 267-238. https://doi.org/10.1680/geot.1995.45.2.267

Sykora, D. W. (1987). Creation of a data base of seismic shear wave velocities for correlation analysis. US Army Engineer Waterways Experiment Station.

Woods, R. D. (1994). Borehole methods in shallow seismic exploration. Geophysical Characterization of Sites, Oxford and IBH Publishing, New Delhi, pp: 91-100.

Yilmaz, I., & Bagci, A. (2006). Soil liquefaction susceptibility and hazard mapping in the residential area of Kutahya (Turkey). Environmental Geology 49(5), 708-719. https://doi.org/10.1007/s00254-005-0112-1

Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. DOI:10.1061/(ASCE)1090-0241(2001)127:10(817)

How to Cite

APA

Chu, Y., Liu, S. and Cai, G. (2021). Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China. Earth Sciences Research Journal, 25(2), 225–235. https://doi.org/10.15446/esrj.v25n2.62287

ACM

[1]
Chu, Y., Liu, S. and Cai, G. 2021. Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China. Earth Sciences Research Journal. 25, 2 (Jul. 2021), 225–235. DOI:https://doi.org/10.15446/esrj.v25n2.62287.

ACS

(1)
Chu, Y.; Liu, S.; Cai, G. Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China. Earth sci. res. j. 2021, 25, 225-235.

ABNT

CHU, Y.; LIU, S.; CAI, G. Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China. Earth Sciences Research Journal, [S. l.], v. 25, n. 2, p. 225–235, 2021. DOI: 10.15446/esrj.v25n2.62287. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/62287. Acesso em: 28 mar. 2024.

Chicago

Chu, Ya, Songyu Liu, and Guojun Cai. 2021. “Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China”. Earth Sciences Research Journal 25 (2):225-35. https://doi.org/10.15446/esrj.v25n2.62287.

Harvard

Chu, Y., Liu, S. and Cai, G. (2021) “Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China”, Earth Sciences Research Journal, 25(2), pp. 225–235. doi: 10.15446/esrj.v25n2.62287.

IEEE

[1]
Y. Chu, S. Liu, and G. Cai, “Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China”, Earth sci. res. j., vol. 25, no. 2, pp. 225–235, Jul. 2021.

MLA

Chu, Y., S. Liu, and G. Cai. “Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China”. Earth Sciences Research Journal, vol. 25, no. 2, July 2021, pp. 225-3, doi:10.15446/esrj.v25n2.62287.

Turabian

Chu, Ya, Songyu Liu, and Guojun Cai. “Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China”. Earth Sciences Research Journal 25, no. 2 (July 19, 2021): 225–235. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/62287.

Vancouver

1.
Chu Y, Liu S, Cai G. Characterization on the correlation between SPT-N and small strain shear modulus Gmax of Jiangsu silts of China. Earth sci. res. j. [Internet]. 2021 Jul. 19 [cited 2024 Mar. 28];25(2):225-3. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/62287

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

291

Downloads

Download data is not yet available.