Published
Quantitative Calculation of Aquifer Water Quantity Using TEM Data
Cálculo cuantitativo del volumen de aguas subterráneas a través del Método Electromagnético Transitorio (TEM)
DOI:
https://doi.org/10.15446/esrj.v21n1.63002Keywords:
Transient electromagnetic method, Apparent resistivity calculation, Time-depth conversion, Water quantity (en)Método Electromagnético Transitorio, cálculo de la resistividad aparente, conversión tiempo-profundidad, cantidad de agua (es)
Downloads
Mine water is a menace to coal mining. Mine water quantity is generally detected by drilling in the coal mine roadway, and the disadvantage is high workload and low efficiency. Therefore, transient electromagnetic method (TEM) was proposed, and TEM data was processed to detect the water yield property of a targeted layer in coal mine. Through a mine-oriented 3D Transient Electromagnetic Method observing system, the signal of induced voltage is obtainable. Transient Electromagnetic Method 3D data volume can be calculated through the calculation of all-time resistivity and time-depth conversion. After an appropriate apparent resistivity value is set, the spatial distribution range of an aquifer can be determined. Then, with water-filling coefficient of the aquifer, its water quantity can be estimated. The water yield property detection results in the No.4 coal seam goaf of the No.80101 workface in Jude Mine of Shanxi, China, demonstrates that the apparent resistivity of this goaf is less than 3 Ω.m, and the projection area of low-resistivity anomaly zone is 22,383 m2. By using the formula Q=KMS, we can estimate that the water volume is 33,574 m3. Three boreholes have been constructed for the later dredging and drainage project, which results in a total water yield of 33,089 m3. The error percentage of the predicted water quantity is less than 1.5%. It can thus be concluded that it is feasible to predict aquifer water content with TEM data.
References
Cheng, J. L., Qiu, H., Ye, Y. T., Yan, G. C., Zhou, J., Cheng, F. B., & Zhang, S. S. (2013). Research on wave-field transformation and data processing of the mine Transient Electromagnetic Method. Journal of the China Coal Society, 38(9), 1646-1650.
Guillemoteau, J., Sailhac, P. & Béhaegel, M. (2011). Regularization strategy for the layered Inversion of airborne transient electromagnetic data: application to in-loop data acquired over the basin of Franceville (Gabon). Geophysical Prospecting. Journal of Immunoassay, 59(6), 1132-1143.
Hu, X. W., Zhang, P. S., Cheng, H., Wu, R. X., & Guo, L. Q. (2013). Quantitative assessment of interference induced by roof bolt during advanced detection with Transient Electromagnetic Method in mine. Journal of Rock Mechanics and Engineering, 32, 3275-3282.
Lin, Z., Ge, S., Li, D., & Peng, W. (2015). Structure Characteristics of Acidic Pretreated Fiber and Self-bind Bio-boards for Public Health. Journal of Pure and Applied Microbiology 9, 221-226.
Liu, Z. L. (2014). The groundwater pollution and environmental protection in China. Biotechnology: An Indian Journal, 10, 1883-14886.
Liu, Z. X., Liu, X. C., & Liu, Y.G. (2009). Research on Transient Electromagnetic Field of mine water-bearing structure by physical model experiment. Journal of Rock Mechanics and Engineering, 28(2), 259-266.
Mollidor, L., Tezkan, B., Bergers, R., & Löhken, J. (2013). Float-transient Electromagnetic Method: in-loop transient electromagnetic measurements on Lake Holzmaar, Germany. Geophysical Prospecting, 61(5), 1056-1064.
Tao, F., Li, W. G., Wang, P., & An, S.P. (2013). Research on fine interpretation for water containment of coal mine rock strata by MT imitated TEM depth inversion method. Journal of the China Coal Society, 38(z1), 129-135.
Tanaka, Y., & Kunisada, E. (2011). Study on meshless method using RPIM for Transient Electromagnetic Field. IEEE Transactions on Magnetics, 47(5), 1178-1181.
Tuncer, O., Shanker, B., & Kempel, L. C. (2014). A hybrid vector generalized finite-element method for Transient Electromagnetic Simulations. Electromagnetics, 34 (3-4), 286-297.
Wang, B., Liu, S. D., Liu, J., Huang, L. Y., & Zhao, L. G. (2011). Advanced prediction for multiple disaster sources of laneway under complicated geological conditions. International Journal of Mining Science and Technology, 21, 749-754.
Wang, B., Liu, S. D., Lu, T., & Sun, H. L. (2014). Coal seam thickness detection in mine roadway by using advanced prediction method. Electronic Journal of Geotechnical Engineering, 19, 4753-4762.
Wang, B., Liu, S. D., Zhou, F. B., Lu, T., Huang, L. Y., & Gao, Y. J. (2016). Polarization migration of three-component reflected waves under small migration aperture condition. Acta Geodynamica Et Geomaterialia, 13(1), 1-12.
Xue, G. Q., Cheng, J. L., Zhou, N. N., Chen, W. Y., & Li, H. (2013). Detection and monitoring of water-filled voids using Transient Electromagnetic Method: A case study in Shanxi, China. Environmental Earth Sciences, 70(5), 2263-2270.
Xu, J. P., Liu, S. D., & Wang, B. (2012). Electrical monitoring criterion for water flow in faults activated by mining. Mine Water and the Environment, 31(31), 172-179.
Yu, J. C. (2007). Mine Transient Electromagnetism Prospecting. China University of Mining and Technology Press, Xuzhou.
Zhang, S. F., Meng, L. S., & Du, X. J. (2010). Transient Electromagnetic Method to investigating potential safety hazard of mine-out area in Tailings Pond of a gold mine. Journal of Jilin University (Earth Science Edition), 40(5), 1177-1182.
Zhang, W., Zhang, D. S., Wang, H. Z., & Cheng, J. X. (2015). Comprehensive technical support for high-quality anthracite production: A case study in the Xinqiao coal mine, Yongxia mining Area, China. Minerals, 5(4), 919-935.
Zhang, W., Zhang, D. S., Wu L. X., & Wang H. Z. (2014). On-site radon detection of mining-induced fractures from overlying strata to the surface: a case study of the Baoshan Coal Mine in China. Energies, 7(12), 8483-8507.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Wei Zhang, Kaidi Xie, Yanchao Zhu, Yandong Zhang, Xu Duan, Jibo Zhu, Hualei Zhang. (2021). An Experimental Apparatus for Monitoring Radon during Compression of Coal/Rock Samples and Its Preliminary Application. Advances in Civil Engineering, 2021(1) https://doi.org/10.1155/2021/6655141.
2. Yueming Kang, Yangcheng Xu, Yao Wang, Yanqing Wu, Qingqing Tan. (2022). Underground transient electromagnetic real-time imaging system for coal mine water disasters. Measurement, 203, p.111709. https://doi.org/10.1016/j.measurement.2022.111709.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.