Published

2017-01-01

Quantitative Calculation of Aquifer Water Quantity Using TEM Data

Cálculo cuantitativo del volumen de aguas subterráneas a través del Método Electromagnético Transitorio (TEM)

DOI:

https://doi.org/10.15446/esrj.v21n1.63002

Keywords:

Transient electromagnetic method, Apparent resistivity calculation, Time-depth conversion, Water quantity (en)
Método Electromagnético Transitorio, cálculo de la resistividad aparente, conversión tiempo-profundidad, cantidad de agua (es)

Downloads

Authors

  • Lanying Huang State Key Laboratory of Deep Geomechanics & Underground Engineering and School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Shengdong Liu State Key Laboratory of Deep Geomechanics & Underground Engineering and School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Bo Wang State Key Laboratory of Deep Geomechanics & Underground Engineering and School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Fubao Zhou 2School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

Mine water is a menace to coal mining. Mine water quantity is generally detected by drilling in the coal mine roadway, and the disadvantage is high workload and low efficiency. Therefore, transient electromagnetic method (TEM) was proposed, and TEM data was processed to detect the water yield property of a targeted layer in coal mine. Through a mine-oriented 3D Transient Electromagnetic Method observing system, the signal of induced voltage is obtainable. Transient Electromagnetic Method 3D data volume can be calculated through the calculation of all-time resistivity and time-depth conversion. After an appropriate apparent resistivity value is set, the spatial distribution range of an aquifer can be determined. Then, with water-filling coefficient of the aquifer, its water quantity can be estimated. The water yield property detection results in the No.4 coal seam goaf of the No.80101 workface in Jude Mine of Shanxi, China, demonstrates that the apparent resistivity of this goaf is less than 3 Ω.m, and the projection area of low-resistivity anomaly zone is 22,383 m2. By using the formula Q=KMS, we can estimate that the water volume is 33,574 m3. Three boreholes have been constructed for the later dredging and drainage project, which results in a total water yield of 33,089 m3. The error percentage of the predicted water quantity is less than 1.5%. It can thus be concluded that it is feasible to predict aquifer water content with TEM data.

El agua al interior de las minas es una amenaza para la minería de carbón. La cantidad del agua en las minas se detecta al perforar en las vías del socavón, con la desventaja de la carga de trabajo y la baja eficacia que significan. Por esto, el presente trabajo propone el Método Electromagnético Transitorio (TEM, del inglés Transient Electromagnetic Method) y utiliza la información generada para detectar las propiedades de producción de agua en una capa específica de una mina de carbón. A través de un sistema de observación tridimensional TEM orientado a minas se puede obtener la señal del voltaje inducido. La capacidad de la información del sistema TEM tridimensional se puede calcular al obtener la resistividad y la conversión tiempo-profundidad. Tan pronto se establece el valor apropiado de la resistividad aparente se puede determinar el rango de distribución de un acuífero. Luego, con el coeficiente de saturación del acuífero se puede calcular la cantidad de agua. Los resultados de la detección de las propiedades de producción de agua en la mina abandonada número cuatro de frente de trabajo número 80101 de la mina Jude, en Shanxi, China, demostró que la resistividad aparente de esta excavación es de 3 Ω.m, y el área de proyección de la zona anómala de baja resistividad es 22.383 m2. Al usar la fórmula Q=KMS, se estimó que el volumen de agua es de 33,574 m3. Tres pozos se han construido para el próximo proyecto de dragado y drenaje, cuyos resultados de producción de agua es de 33,089 m3. El porcentaje de error de la predicción de la cantidad de agua es menor al 1.5 %. Se concluye, por ende, que es factible producir el contenido de agua de un acuífero con la información del TEM.

References

Cheng, J. L., Qiu, H., Ye, Y. T., Yan, G. C., Zhou, J., Cheng, F. B., & Zhang, S. S. (2013). Research on wave-field transformation and data processing of the mine Transient Electromagnetic Method. Journal of the China Coal Society, 38(9), 1646-1650.

Guillemoteau, J., Sailhac, P. & Béhaegel, M. (2011). Regularization strategy for the layered Inversion of airborne transient electromagnetic data: application to in-loop data acquired over the basin of Franceville (Gabon). Geophysical Prospecting. Journal of Immunoassay, 59(6), 1132-1143.

Hu, X. W., Zhang, P. S., Cheng, H., Wu, R. X., & Guo, L. Q. (2013). Quantitative assessment of interference induced by roof bolt during advanced detection with Transient Electromagnetic Method in mine. Journal of Rock Mechanics and Engineering, 32, 3275-3282.

Lin, Z., Ge, S., Li, D., & Peng, W. (2015). Structure Characteristics of Acidic Pretreated Fiber and Self-bind Bio-boards for Public Health. Journal of Pure and Applied Microbiology 9, 221-226.

Liu, Z. L. (2014). The groundwater pollution and environmental protection in China. Biotechnology: An Indian Journal, 10, 1883-14886.

Liu, Z. X., Liu, X. C., & Liu, Y.G. (2009). Research on Transient Electromagnetic Field of mine water-bearing structure by physical model experiment. Journal of Rock Mechanics and Engineering, 28(2), 259-266.

Mollidor, L., Tezkan, B., Bergers, R., & Löhken, J. (2013). Float-transient Electromagnetic Method: in-loop transient electromagnetic measurements on Lake Holzmaar, Germany. Geophysical Prospecting, 61(5), 1056-1064.

Tao, F., Li, W. G., Wang, P., & An, S.P. (2013). Research on fine interpretation for water containment of coal mine rock strata by MT imitated TEM depth inversion method. Journal of the China Coal Society, 38(z1), 129-135.

Tanaka, Y., & Kunisada, E. (2011). Study on meshless method using RPIM for Transient Electromagnetic Field. IEEE Transactions on Magnetics, 47(5), 1178-1181.

Tuncer, O., Shanker, B., & Kempel, L. C. (2014). A hybrid vector generalized finite-element method for Transient Electromagnetic Simulations. Electromagnetics, 34 (3-4), 286-297.

Wang, B., Liu, S. D., Liu, J., Huang, L. Y., & Zhao, L. G. (2011). Advanced prediction for multiple disaster sources of laneway under complicated geological conditions. International Journal of Mining Science and Technology, 21, 749-754.

Wang, B., Liu, S. D., Lu, T., & Sun, H. L. (2014). Coal seam thickness detection in mine roadway by using advanced prediction method. Electronic Journal of Geotechnical Engineering, 19, 4753-4762.

Wang, B., Liu, S. D., Zhou, F. B., Lu, T., Huang, L. Y., & Gao, Y. J. (2016). Polarization migration of three-component reflected waves under small migration aperture condition. Acta Geodynamica Et Geomaterialia, 13(1), 1-12.

Xue, G. Q., Cheng, J. L., Zhou, N. N., Chen, W. Y., & Li, H. (2013). Detection and monitoring of water-filled voids using Transient Electromagnetic Method: A case study in Shanxi, China. Environmental Earth Sciences, 70(5), 2263-2270.

Xu, J. P., Liu, S. D., & Wang, B. (2012). Electrical monitoring criterion for water flow in faults activated by mining. Mine Water and the Environment, 31(31), 172-179.

Yu, J. C. (2007). Mine Transient Electromagnetism Prospecting. China University of Mining and Technology Press, Xuzhou.

Zhang, S. F., Meng, L. S., & Du, X. J. (2010). Transient Electromagnetic Method to investigating potential safety hazard of mine-out area in Tailings Pond of a gold mine. Journal of Jilin University (Earth Science Edition), 40(5), 1177-1182.

Zhang, W., Zhang, D. S., Wang, H. Z., & Cheng, J. X. (2015). Comprehensive technical support for high-quality anthracite production: A case study in the Xinqiao coal mine, Yongxia mining Area, China. Minerals, 5(4), 919-935.

Zhang, W., Zhang, D. S., Wu L. X., & Wang H. Z. (2014). On-site radon detection of mining-induced fractures from overlying strata to the surface: a case study of the Baoshan Coal Mine in China. Energies, 7(12), 8483-8507.

How to Cite

APA

Huang, L., Liu, S., Wang, B. and Zhou, F. (2017). Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth Sciences Research Journal, 21(1), 51–56. https://doi.org/10.15446/esrj.v21n1.63002

ACM

[1]
Huang, L., Liu, S., Wang, B. and Zhou, F. 2017. Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth Sciences Research Journal. 21, 1 (Jan. 2017), 51–56. DOI:https://doi.org/10.15446/esrj.v21n1.63002.

ACS

(1)
Huang, L.; Liu, S.; Wang, B.; Zhou, F. Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth sci. res. j. 2017, 21, 51-56.

ABNT

HUANG, L.; LIU, S.; WANG, B.; ZHOU, F. Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth Sciences Research Journal, [S. l.], v. 21, n. 1, p. 51–56, 2017. DOI: 10.15446/esrj.v21n1.63002. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/63002. Acesso em: 18 apr. 2024.

Chicago

Huang, Lanying, Shengdong Liu, Bo Wang, and Fubao Zhou. 2017. “Quantitative Calculation of Aquifer Water Quantity Using TEM Data”. Earth Sciences Research Journal 21 (1):51-56. https://doi.org/10.15446/esrj.v21n1.63002.

Harvard

Huang, L., Liu, S., Wang, B. and Zhou, F. (2017) “Quantitative Calculation of Aquifer Water Quantity Using TEM Data”, Earth Sciences Research Journal, 21(1), pp. 51–56. doi: 10.15446/esrj.v21n1.63002.

IEEE

[1]
L. Huang, S. Liu, B. Wang, and F. Zhou, “Quantitative Calculation of Aquifer Water Quantity Using TEM Data”, Earth sci. res. j., vol. 21, no. 1, pp. 51–56, Jan. 2017.

MLA

Huang, L., S. Liu, B. Wang, and F. Zhou. “Quantitative Calculation of Aquifer Water Quantity Using TEM Data”. Earth Sciences Research Journal, vol. 21, no. 1, Jan. 2017, pp. 51-56, doi:10.15446/esrj.v21n1.63002.

Turabian

Huang, Lanying, Shengdong Liu, Bo Wang, and Fubao Zhou. “Quantitative Calculation of Aquifer Water Quantity Using TEM Data”. Earth Sciences Research Journal 21, no. 1 (January 1, 2017): 51–56. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/63002.

Vancouver

1.
Huang L, Liu S, Wang B, Zhou F. Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth sci. res. j. [Internet]. 2017 Jan. 1 [cited 2024 Apr. 18];21(1):51-6. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/63002

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Wei Zhang, Kaidi Xie, Yanchao Zhu, Yandong Zhang, Xu Duan, Jibo Zhu, Hualei Zhang. (2021). An Experimental Apparatus for Monitoring Radon during Compression of Coal/Rock Samples and Its Preliminary Application. Advances in Civil Engineering, 2021, p.1. https://doi.org/10.1155/2021/6655141.

2. Yueming Kang, Yangcheng Xu, Yao Wang, Yanqing Wu, Qingqing Tan. (2022). Underground transient electromagnetic real-time imaging system for coal mine water disasters. Measurement, 203, p.111709. https://doi.org/10.1016/j.measurement.2022.111709.

Dimensions

PlumX

Article abstract page views

432

Downloads

Download data is not yet available.