Published

2017-01-01

Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge

Curvas de solución y tipo para el modelo de filtración de capas carboníferas acuíferas con recarga de fugas

DOI:

https://doi.org/10.15446/esrj.v21n1.63003

Keywords:

Coalbed methane (CBM), Formation water, Leakage, Well test analysis (en)
Gas metano de carbón (CBM), formación de agua, pérdida de fluido, análisis de pozo (es)

Downloads

Authors

  • Wangang Chen Research Center, China United Coalbed Methane Co. Ltd., Beijing 100011, China
  • Yu Yang College of Energy, Chengdu University of Technology, Chengdu 610059, China
  • Hansen Sun Research Center, China United Coalbed Methane Co. Ltd., Beijing 100011, China
  • Chengwei Zhang College of Energy, Chengdu University of Technology, Chengdu 610059, China
  • Qin Wen College of Energy, Chengdu University of Technology, Chengdu 610059, China
  • Yanyan Li Research Center, China United Coalbed Methane Co. Ltd., Beijing 100011, China

To analyze the effects of the leakage recharge of the aquifer on the initial dewatering of coalbed methane wells, the mathematical seepage model of water in the coalbed considering the aquifer leakage was established by using the leakage coefficient according to the unsteady seepage theory. The model was solved after Laplace transform and the Stehfest numerical reverse inversion was used to obtain the solution in right space. Then, the log-log type curves of pressure and pressure derivative were created with new combinations of parameters. Based on the natural seepage mechanism, the influence of aquifer leakage on curve shape was judged. It is found that the radial flow ends earlier as the leakage coefficient increases. Moreover, it was proposed to obtain reservoir permeability, skin factor, and leakage coefficient by using type curve matching. The type curves are useful for quantitatively evaluating the level of leakage, thereby guiding the adjustment of the following production system for CBM wells.

Este estudio estableció el modelo matemático de filtración de agua en una capa carbonífera al estimar la salida acuífera con el uso del coeficiente de fuga, de acuerdo con la teoría de filtración inestable, para analizar los efectos en la recarga de pérdida de fluidos de un acuífero en el drenado inicial para pozos de gas metano.  El modelo se resolvió tras usar la transformación Laplace y la inversión numérica Stehfest para encontrar la respuesta en el lugar indicado. Luego, se creó la representación algorítmica de la presión y la presión derivativa con nuevas combinaciones de parámetros. Se evaluó la influencia de la pérdida de fluido del acuífero en la forma de la curva con base al mecanismo físico de filtración. Se estableció que el flujo radial finaliza antes de que el coeficiente de pérdida de fluido se incremente. Además, se propone el uso de la curva tipo correspondiente para obtener la permeabilidad del reservorio, el factor de daño y el coeficiente de pérdida de fluido. Las curvas tipo son útiles para evaluar cuantitativamente el nivel de la pérdida de fluido, y de esta manera guiar el ajuste de un sistema de producción consecuente para pozos de gas metano de carbón. 

References

Chen, F. F., Jia, Y. L., & Zhang, F. X. (2011). Double-layer triple-porosity seepage model and well test curves with inter-layer leakage. Well Testing, 20(1), 10-13.

Cox, D. O., & Onsager, P. R. (2002). Application of leaky aquifer type curves for coalbed methane characterization. Society of Petroleum Engineers, 1, 1-10.

Gao, C. T. (1990). Interpretation theory for stratified transient well test of leaky multi-layer oil reservoir. Acta Petrolei Sinica, 11(3), 72-81.

Hantush, M. S., & Jacob, C. E. (1955a). Non-steady radial flow in an infinite leaky aquifer. Eos Transactions American Geophysical Union, 36(1), 95-100.

Hantush, M. S., & Jacob, C. E. (1955b). Steady three-dimensional flow to a well in a two-layered aquifer. Transactions American Geophysical Union, 36(2), 286-292.

Huo, J., Jia, Y. L., & Wang, H. T. (2006). Oil and gas reservoir model for multilayer channeling and dynamic monitor down-hole pressure. Well Testing, 15(2), 1-4.

Jia, Y. L. (1997). Dynamic model of down-hole pressure of reservoirs with leakage of two Pays. Natural Gas Industry, 17(1), 52-54.

Katz, M. L., & Tek, M. R. (1962). A theoretical study of pressure distribution and fluid flux in bounded stratified porous systems with leakage. SPE Journal, 68(3), 225-234.

Liu, N. Q. (2003). Practical modern well test interpretation method. Petroleum Industry Press, Beijing.

Liu, Z. L. (2014). The stagnant air and haze in China: where come and go. Biotechnology: An Indian Journal 10, 14027-14031.

Meng, Z. P. (2010). Theories and methods of coalbed methane development geology. Science Press, Beijing. pp. 198-200.

Onsager, P. R., & Cox, D. O. (2000). Aquifer controls on coalbed methane development in the powder river basin. Wyoming. Society of Petroleum Engineers, 1, 1-8.

Russell, D. G., & Prats, M. (1962). The practical aspects of inter-layer leakage. JPT, 54(6), 589-593.

Su, X. B., & Lin, X. Y. (2009). Coalbed methane geology. Coal Industry Press, Beijing.

Streltsova, T. D. (1988). Well testing in heterogenous formations. John Wiley & Sons Inc., New York. pp. 313-314.

Stehfest, H. (1970). Remark on algorithm 368 numerical inversion of Laplace transforms. Communications of ACM, 13(10), 624-625.

Sun, H. D., Liu, L., & Zhou, F. D. (2003). Exact solution and type curve for infinite three layers reservoir with leakage. Mineralogy and Petrology, 23(1), 101-104.

Wu, Y. L. (2004). Pressure behavioral characteristics and well testing analysis theoretical research of stratified gas reservoir. Southwest Petroleum Institute, 17-39.

Yang, Y., Zhang, F. D., & Sun, H. S. (2015). Well test analysis. Geological Publishing House, Beijing.

Zhang, L. H., Wang, H. T., & Jia, Y. L. (2009). Seepage model of dual-porosity media double-layer reservoir with inter-layer leakage. Journal of Southwest Petroleum University (Edition of Natural Science), 31(5), 178-182.

Zhang, S. B., Sun X. B., Guo H. Y. (2013). Identifying method of leakage recharge in CBM wells. Coal Geology & Exploration, 41(5), 29-32.

How to Cite

APA

Chen, W., Yang, Y., Sun, H., Zhang, C., Wen, Q. and Li, Y. (2017). Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge. Earth Sciences Research Journal, 21(1), 17–21. https://doi.org/10.15446/esrj.v21n1.63003

ACM

[1]
Chen, W., Yang, Y., Sun, H., Zhang, C., Wen, Q. and Li, Y. 2017. Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge. Earth Sciences Research Journal. 21, 1 (Jan. 2017), 17–21. DOI:https://doi.org/10.15446/esrj.v21n1.63003.

ACS

(1)
Chen, W.; Yang, Y.; Sun, H.; Zhang, C.; Wen, Q.; Li, Y. Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge. Earth sci. res. j. 2017, 21, 17-21.

ABNT

CHEN, W.; YANG, Y.; SUN, H.; ZHANG, C.; WEN, Q.; LI, Y. Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge. Earth Sciences Research Journal, [S. l.], v. 21, n. 1, p. 17–21, 2017. DOI: 10.15446/esrj.v21n1.63003. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/63003. Acesso em: 20 jul. 2024.

Chicago

Chen, Wangang, Yu Yang, Hansen Sun, Chengwei Zhang, Qin Wen, and Yanyan Li. 2017. “Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge”. Earth Sciences Research Journal 21 (1):17-21. https://doi.org/10.15446/esrj.v21n1.63003.

Harvard

Chen, W., Yang, Y., Sun, H., Zhang, C., Wen, Q. and Li, Y. (2017) “Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge”, Earth Sciences Research Journal, 21(1), pp. 17–21. doi: 10.15446/esrj.v21n1.63003.

IEEE

[1]
W. Chen, Y. Yang, H. Sun, C. Zhang, Q. Wen, and Y. Li, “Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge”, Earth sci. res. j., vol. 21, no. 1, pp. 17–21, Jan. 2017.

MLA

Chen, W., Y. Yang, H. Sun, C. Zhang, Q. Wen, and Y. Li. “Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge”. Earth Sciences Research Journal, vol. 21, no. 1, Jan. 2017, pp. 17-21, doi:10.15446/esrj.v21n1.63003.

Turabian

Chen, Wangang, Yu Yang, Hansen Sun, Chengwei Zhang, Qin Wen, and Yanyan Li. “Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge”. Earth Sciences Research Journal 21, no. 1 (January 1, 2017): 17–21. Accessed July 20, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/63003.

Vancouver

1.
Chen W, Yang Y, Sun H, Zhang C, Wen Q, Li Y. Solution and type curves for the seepage model of the water-bearing coalbed with leakage recharge. Earth sci. res. j. [Internet]. 2017 Jan. 1 [cited 2024 Jul. 20];21(1):17-21. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/63003

Download Citation

CrossRef Cited-by

CrossRef citations2

1. L. E. Rivera, J. E. Mariño, Mehdi Ostadhassan. (2023). Hydrogeological Challenge for Coal Bed Methane (CBM) Production in Structurally Complex Reservoirs: Case Study for the Synclines of Umbita and Checua-Lenguazaque, Colombia. Journal of GeoEnergy, 2023, p.1. https://doi.org/10.1155/2023/5547618.

2. Liting Qiu, Zhenzhong Shen, Xiandun Chai, Detan Liu, Hongwei Zhang. (2018). Inverse analysis of hydraulic parameters of rock mass based on the unsteady seepage calculation theory. IOP Conference Series: Earth and Environmental Science, 170, p.022024. https://doi.org/10.1088/1755-1315/170/2/022024.

Dimensions

PlumX

Article abstract page views

402

Downloads

Download data is not yet available.