Published
Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
Predicción de vientos en una altiplanicie a la altura del eje con el esquema de la Universidad Yonsei/Modelo Superficie Terrestre Noah y la predicción estadística
DOI:
https://doi.org/10.15446/esrj.v21n1.63004Keywords:
Wind forecast, WRF/YSU/ Noah, BP-ANN, LS-SVM (en)Predicción del viento, esquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), propagación hacia atrás en redes neuronales artificiales, máquina de vectores (es)
Downloads
The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction.
References
Asis, J., Tahir, S. H., Rahim, A. R., Konjing, Z., Kob, R. C., & Tjia, H.D. (2017). Smaller benthic foraminifera Analysis of Kudat Formation, Kudat, Sabah: Preliminary Interpretation. Geological Behavior, 1(1) 27-29.
Carolin, M. M., & Fernandez, E. (2008). Analysis of wind power generation and prediction using ANN: A case study. Renewable Energy, 33(5), 986-992. DOI: http://doi.org/10.1016/j.renene.2007.06.013
Deppe, A. J., Gallus, W. A., & Takle, E. S. (2013). A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height. Weather and Forecasting, 28, 212–228. DOI: 10.1175/WAF-D-11-00112.1
Dudhia, J. (1989). Numerical study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., & Tarpley, J. D. (2003). Implementation of Noah land-surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research, 108, 8851. DOI:10.1029/2002JD003296.
Giebel, G., Brownsword, R., Kariniotakis, G., & Denhard, D. C. (2011). The state of the art in short-term prediction of wind power: A literature overview. 2nd edition. Project report for the ANEMOS and SafeWind projects, Ris, DTU.
Hong, S. Y., & Noh, Y. (2006). A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318–2341. DOI: http://dx.doi.org/10.1175/MWR3199.1
Hong, S. Y., Dudhia, J., Chen, S. H. (2004). A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, 132, 103–120. DOI: http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Kain, J.S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170–181. DOI: 10.1029/2009WR007704.
Lai, G. T., Razib, A. M., Mazlan, N. A., Rafek, A. G., Serasa, A. S., … & Mohamed, T. R. (2017). Rock slope stability assessment of limestone hills in Northern Kinta valley, Ipoh, Perak, Malaysia. Geological Behavior, 1(1), 22-26
Landberg, L.Short-term prediction of local wind conditions.Journal of Wind Engineering and Industrial Aerodynamics, 89(3-4), 235–245. DOI: http://doi.org/10.1016/S0167-6105(00)00079-9
Li, Y., Cheng, P., Lu, Y., & Song, Y. (2015). Wind power forecasting over the gypical complex terrains (in Chinese). Plateau meteorology, 34(2), 413–425. DOI: 10.7522/j.issn.1000-0534.2013.00181
Li, X., Liu, Y., & Xin, W. (2009). Wind speed prediction based on genetic neural network. IEEE Conference on Industrial Electronics and Applications, Beijing,China, 2448–2451.DOI: 10.1109/ICIEA.2009.5138642
Lindang, H. U., Tarmudi, Z. H., & Jawan, A. (2017). Assessing Water Quality Index in River Basin: Fuzzy Inference System Approach. Malaysian Journal of Geosciences, 1(1) 27-31.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102, 16663–16682. DOI: 10.1029/97JD00237
Peng, H., Liu, F., & Yang, X. (2011). Short term wind speed forecast based on combined frediction. Acta Energiae Solaris Sinica, 32(4), 543–547.
Pielke, R.A.S. (2002). Mesoscale Meteorological Modeling. Volume 78 of International Geophysics Series. Academic Press, 2nd edition, 676 pags.
Rahim, I. A., & Usli, M. N. R. (2017). Slope Stability Study Around Kampung Kuala Abai, Kota Belud, Sabah, Malaysia. Malaysian Journal of Geosciences, 1(1), 38-42.
Ridzuan, A. A., Zahar, U. A., Noor, N. A. (2017). Association of Evacuation Dimensions towards Risk Perception of the Malaysian students who studied at Jakarta, Medan, and Acheh in Indonesia. Malaysian Journal of Geosciences, 1(1) (2017) 06-11
Roslee, R., Simon, N., Tongkul, F., Norhisham, M. N., & Taharin, M. R. (2017). Landslide Susceptibility Analysis (LSA) using Deterministic Model (Infinite Slope) (DESSISM) in the Kota Kinabalu Area, Sabah, Malaysia. Geological Behavior, 1(1) 06-09.
Shimada, S., Oshawa, T., Chikaoka, S. (2011). Accuracy of the Wind Speed Profile in the Lower PBL as simulated by the WRF model. Sola, 7, 109–112. DOI: http://doi.org/10.2151/sola.2011-028
Shuib, M. K., Manap, M. A., Tongkul, F., Rahim, I. B., Jamaludin, T. A., Surip, N., … Ahmad, Z. (2017). Active Faults in Peninsular Malaysia with Emphasis on Active Geomorphic Features of Bukit Tinggi Region. Malaysian Journal of Geosciences, 1(1), 12-24.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M. G., Duda, X. Y., Huang, D. M., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research WRF version 3. Technical report, NCAR Tech Notes-475+STR.
Vapnik, V.N.(1995). The Nature of Statistical Learning Theory.New York, Springer-Verlag, 1995, 138–170.
Yang, X., Cui, Y., Zhang, H., & Tang, N. (2009). Research on modeling of wind turbine based on LS-SVM. International Conference on Sustainable Power Generation and Supply, Nanjing, China, 1–6.DOI: 10.1109/SUPERGEN.2009.5348180
Yu., L. K., & Rahim, I. A. (2017). Application of GIS system for slope stability studies on selected slopes of the crocker formation in Kota Kinabalu area, Sabah. Geological Behavior, 1(1) 10-12
Zhang, H., & Zeng, J. (2010). Wind speed forecasting model study based on support vector machine. Acta Energiae Solaris Sinica, 31(7), 928–932.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Lingzhi Yi, Yue Liu, Wenxin Yu, Jian Zhao. (2020). A novel nonlinear observer for fault diagnosis of induction motor. Journal of Algorithms & Computational Technology, 14 https://doi.org/10.1177/1748302620922723.
2. Zhanping Wang, Juncang Tian, Kepeng Feng. (2019). Optimal allocation of multi-objective water treatment based on hybrid particle swarm optimization algorithm. Desalination and Water Treatment, 163, p.310. https://doi.org/10.5004/dwt.2019.24440.
3. Agustín Sánchez-del Rey, Isabel Cristina Gil-García, María Socorro García-Cascales, Ángel Molina-García. (2022). Online Wind-Atlas Databases and GIS Tool Integration for Wind Resource Assessment: A Spanish Case Study. Energies, 15(3), p.852. https://doi.org/10.3390/en15030852.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.