Published

2017-04-01

Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study

Estudio experimental del Método Electromagnético Transitorio con transmisión doble y recepción séxtuple

DOI:

https://doi.org/10.15446/esrj.v21n2.63006

Keywords:

Borehole transient electromagnetic method, Double-transmitting and sextuple-receiving, Negative transformation algorithm, Radial azimuth, Radial depth (en)
Método Electromagnético Transitorio, transmisión doble y recepción séxtuple (es)

Downloads

Authors

  • Bo Wang State Key Laboratory of deep geomechanics & underground engineering and School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Shengdong Liu State Key Laboratory of deep geomechanics & underground engineering and School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Shining Li Hebei Research Institute of Investigation and Design of Water Conservancy and Hydropower, Tianjin 300143, China
  • Fubao Zhou School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

With the continuous improvement of precision requirements for borehole geophysical exploration, the application of transient electromagnetic method (from now on referred to as TEM) in a borehole has become a hot spot. The conventional borehole TEM can only determine the longitudinal depth of the geological anomaly, the radial azimuth and depth cannot be resolved. A double-transmitting and sextuple-receiving borehole TEM is proposed, through which the radial anomaly is excited by the electromagnetic field generated by the double-emitting loops, and the azimuth and depth of the anomaly will be identified by the difference characteristics of the six receiving loops signals. In this paper, the response equations of the transmitting-receiving mode of double-transmitting and sextuple-receiving borehole TEM are deduced, and the response characteristics of the induction segment and the attenuation segment of the receiving loops are obtained based on the response equations under ramp function turn-off condition, providing the basis for theoretical analysis. Due to the negative value of the double-transmitting and sextuple-receiving transient electromagnetic response signals, a negative transformation algorithm under the double logarithmic coordinate system is proposed to provide the essential method for the analysis of two kinds of physical simulation experimental data of the radial azimuth and radial depth detection of the anomaly. The results show that the double-transmitting and sextuple-receiving borehole TEM has decent resolution ability in detecting the radial azimuth of the anomaly, and the effective resolution is 30°. The geometric difference among induced voltages of different measuring points can be used to evaluate the radial depth of the anomaly qualitatively. It is expected that the double-transmitting and sextuple-receiving borehole TEM can provide technical guidance for little borehole geophysical exploration in the fields of oil, natural gas, coal and basic engineering construction.

Con la necesidad continua de mejorar la precisión en la exploración de perforaciones geofísicas, la aplicación del Método Electromagnético Transitorio (TEM, del inglés Transient Electromagnetic Method) se ha convertido en un tema de constantes estudios. La aplicación del TEM en perforaciones convencionales solo puede determinar la profundidad longitudinal de las anomalías geológicas, pero no puede resolver el acimut radial y la profundidad. Este estudio propone la aplicación del método TEM con transmisión doble y recepción séxtuple a través de la cual se altera la anomalía radial con el campo electromagnético generado por la doble emisión de ondas, mientras el acimut y la profundidad de las anomalías se identifican por las características de las señales de las seis enlaces de recepción. En este trabajo se dedujo la respuesta de las ecuaciones del modo transmisión-recepción para la transmisión doble y la recepción séxtuple en las perforaciones con el método TEM, y se obtuvieron las respuestas características del segmento de inducción y el segmento de atenuación de las ondas de recepción basados en la solución de las ecuaciones en condición de apagado de la función rampa, lo que proporciona las bases para el análisis teórico. Debido al valor negativo en las señales de respuesta de la transmisión doble y recepción séxtuple del transitorio electromagnéctio, se propone un algoritmo de transformación negativa bajo el sistema de coordenadas doblemente logarítmicas para proveer el método esencial del análisis de dos clases de información de simulación física experimental del acimut radial y la detección de la profundidad radial de la anomalía. Los resultados muestran que el TEM con transmisión doble y recepción séxtuple en perforaciones tiene una buena capacidad de resolución para detectar el acimut radial de la anomalía, con una resolución efectiva de 30 grados. La diferencia geométrica de los voltajes inducidos desde los diferentes puntos de medida se puede utilizar para evaluar cualitativamente la profundidad radial de la anomalía. La expectativa es que el método TEM con transmisión doble y recepción séxtuple en perforaciones puede proveer orientación técnica para pequeñas exploraciones de perforación geofísica en los campos de petróleo, gas natural, carbón y construcciones básicas de ingeniería.

References

Fitterman D.V., Anderson W.L., 1987. Effect of transmitter turn-off time on transient soundings. Geoexploration, 24(2), 131-146.

Gan, T., Balmain, B., Sibgatullin, A., 2016. Formation evaluation logoff results comparing new generation mining-style logging tools to conventional oil and gas logging tools for application in coalbed methane (CBM) field development. Journal of Natural Gas Science and Engineering, 34(8), 1237-1250.

Gorbatenko, A.A., Sukhorukova, K.V., 2016. High-frequency induction logging in deviated and horizontal wells: Geosteering and inversion. Russian Geology and Geophysics, 57(7), 1111-1117.

Guo, B.L., Song, X.J., 2012. Research on receiving technology of transient electromagnetic method in production wells. Journal of Northwest University (Natural Science Edition), 6, 890-896.

Jiang, B.Y., 1988. Application of transient electromagnetic method in near field magnetic source exploration. Geological Publishing House, Beijing.

Kamsani S.R., Ibrahim N., Ishak N.A., 2017. Psychological debriefing intervention: From the lens of disaster volunteers, Malaysian Journal of Geoscience, 1(1), 32-33.

Karinskiy, A.D., Daev, D.S., 2016. The effects of tool eccentricity and formation anisotropy on resistivity logs: forward modeling. Russian Geology and Geophysics, 57(10), 1477-1484.

Khoshbakht, F., Rasaie, M.R., Shekarifard, A., 2016. Investigating induction log response in the presence of natural fractures. Journal of Petroleum Science and Engineering, 145, 357-369.

Lai G.T., Razib A.M.M., Mazlan N.A., Rafek A.G., Serasa A.S., Simon N., Surip N., Ern L.K., Rusli T., Mohamed., 2017. Rock slope stability assessment of limestone hills in Northern Kinta Valley, Ipoh, Perak, Malaysia, Geological Behavior, 1(1), 16-18.

Lindang H.U., Tarmudi Z.H., Jawan A., 2017. Assessing water quality index in river basin: Fuzzy inference system approach, Malaysian Journal of Geoscience, 1(1), 27-31.

Liu, S.D., Liu, J., Yue, J.H., 2014. Development status and key problems of Chinese mining geophysical technology. Coal Science and Technology, 39(1), 19-25.

Mcneil, J.D., 1984. Approximate calculations of the transient electromagnetic response from buried conductors in a conductive half-space turn-off duration. Geophysis, 49(7), 918-924.

Ren, Z.P., Dang, R.R., Song, X.J., 2011. Study on transient electromagnetic response characteristics of production wells. Journal of Oil and Gas Technology, 33(9), 100-104.

Roslee R., Bidin K., Musta B., Tahir S., Tongkul F., Norhisham M.N., 2017. GIS application for comprehensive spatial soil erosion analysis with MUSLE model in Sandakan town area, Sabah, Malaysia, Geological Behavior, 1(1), 01-05.

School C., Edwards R.N., 2007. Marine downhole to searfloor dipole-dipole electromagnetic methods and the resolution of resistive targets. Geophysics, 72, 39-49.

Shen, J.G., Meng, C., Pi, Y.G., 2016. Transient electromagnetic logging theory - transient induction logging. Progress in Geophysics, 31(2), 770-774.

Stolz E.M., 2003. Direct detection of gold bearing structures at St Ives, WA-DHEM vs DHMMR. Exploration Geophysics, 34, 131-136.

Strack, K.M., 2014. Future directions of electromagnetic methods for hydrocarbon applications. Surveys in Geophysics, 35(1), 157-177.

Wang, Y.H., 2012. Cased hole electromagnetic logging theory and parameter optimization. Xi’an Shiyou University, Xi’an, China.

Wilkinson K., Chamberlain T., Grundy M., 2005. The role of geophysics in understanding salinisation in SW Queensland. Exploration Geophysics, 36, 78-85.

Yang, H.Y., 2009. Study on numerical simulation and distribution regularity of transient electromangnetic field with mine-uesd multi small loop. China University of Mining and Technology, Xuzhou, China.

Zang, D.F., Zhu, L.F., Zhang, F.M., Shen, J.G., Shen, Y.J., Wang, Z.L., 2014. Theory study for transient electromagnetic logging: electromagnetic wave. Well Logging Technology, 5, 530-534.

Zhang, H., 2012. Design of Downhole Transient Electromagnetic Large Power Source. Yangtze University, Jingzhou, China.

Zhong. S.M., Zheng, D.Z., 1986. Transient process analysis. Tsinghua University Press, Beijing.

How to Cite

APA

Wang, B., Liu, S., Li, S. and Zhou, F. (2017). Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study. Earth Sciences Research Journal, 21(2), 77–83. https://doi.org/10.15446/esrj.v21n2.63006

ACM

[1]
Wang, B., Liu, S., Li, S. and Zhou, F. 2017. Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study. Earth Sciences Research Journal. 21, 2 (Apr. 2017), 77–83. DOI:https://doi.org/10.15446/esrj.v21n2.63006.

ACS

(1)
Wang, B.; Liu, S.; Li, S.; Zhou, F. Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study. Earth sci. res. j. 2017, 21, 77-83.

ABNT

WANG, B.; LIU, S.; LI, S.; ZHOU, F. Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study. Earth Sciences Research Journal, [S. l.], v. 21, n. 2, p. 77–83, 2017. DOI: 10.15446/esrj.v21n2.63006. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/63006. Acesso em: 18 apr. 2024.

Chicago

Wang, Bo, Shengdong Liu, Shining Li, and Fubao Zhou. 2017. “Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study”. Earth Sciences Research Journal 21 (2):77-83. https://doi.org/10.15446/esrj.v21n2.63006.

Harvard

Wang, B., Liu, S., Li, S. and Zhou, F. (2017) “Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study”, Earth Sciences Research Journal, 21(2), pp. 77–83. doi: 10.15446/esrj.v21n2.63006.

IEEE

[1]
B. Wang, S. Liu, S. Li, and F. Zhou, “Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study”, Earth sci. res. j., vol. 21, no. 2, pp. 77–83, Apr. 2017.

MLA

Wang, B., S. Liu, S. Li, and F. Zhou. “Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study”. Earth Sciences Research Journal, vol. 21, no. 2, Apr. 2017, pp. 77-83, doi:10.15446/esrj.v21n2.63006.

Turabian

Wang, Bo, Shengdong Liu, Shining Li, and Fubao Zhou. “Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study”. Earth Sciences Research Journal 21, no. 2 (April 1, 2017): 77–83. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/63006.

Vancouver

1.
Wang B, Liu S, Li S, Zhou F. Double-transmitting and Sextuple-receiving Borehole Transient Electromagnetic Method and Experimental Study. Earth sci. res. j. [Internet]. 2017 Apr. 1 [cited 2024 Apr. 18];21(2):77-83. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/63006

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Changsheng Liu, Chunfeng Zhang, Haigen Zhou, Naijia Liu, Gang Li. (2021). Design of Shallow Surface Electromagnetic Detection Transmitting Scheme Based on Three-Frequency Resonance. IEEE Transactions on Instrumentation and Measurement, 70, p.1. https://doi.org/10.1109/TIM.2020.3023980.

Dimensions

PlumX

Article abstract page views

432

Downloads

Download data is not yet available.