Published
The Modified Quasi-geostrophic Barotropic Models Based on Unsteady Topography
Modelos semigeostróficos barotrópicos modificados con base en topografía inestable
DOI:
https://doi.org/10.15446/esrj.v21n1.63007Keywords:
Quasi-geostrophic, Potential vorticity, Scale analysis, Topography (en)Semigeostrofía-Vorticidad potencial, análisis a escala, topografía (es)
Downloads
New models using scale analysis and perturbation methods were derivated starting from the shallow water equations based on barotropic fluids. In the paper, to discuss the irregular topography with different magnitudes, especially considering the condition of the vast terrain, some modified quasi-geostrophic barotropic models were obtained. The unsteady terrain is more suitable to describe the motion of the fluid state of the earth because of the change of global climate and environment, so the modified models are more rational potential vorticity equations. If we do not consider the influence of topography and other factors, the models degenerate to the general quasi-geostrophic barotropic equations in the previous studies.
Este trabajo deduce nuevos modelos con el uso de los métodos de análisis a escala y de perturbación a partir de las ecuaciones de aguas poco profundas con base en fluidos barotrópicos. En este artículo se obtuvieron algunos modelos semigeostróficos barotrópicos para aplicar en zonas de topografía inestable con diferentes magnitudes y considerar especialmente la condición del extenso terreno. La topografía inestable es más propicia para describir el movimiento del estado fluido de la tierra debido al cambio del clima y ambiente, por lo tanto los modelos modificados son ecuaciones de vorticidad potenciales más razonables. Si no se considera la influencia de la topografía y otros factores, los modelos se reducirían a las ecuaciones generales semigeostróficas barotrópicas de estudios anteriores.
References
Abdullah, M. P. (2017). Stakeholders’ response and perspectives on flood disaster of Pahang river basin. Malaysian Journal of Geosciences, 1(1) 43-49.
Alvarez, A. (1994). Effect of topographic stress on circulation in the western Mediterranean. Journal of Geophysical Research Atmospheres, 99(C8), 16053-16064.
Cessi, P., & Pedlosky, J. (1986). On the role of topography in the ocean circulation. Journal of Marine Research, 44 (3), 445-471.
Chen, J., & Liu, S. K. (1998). The Solitary waves of the Barotropic Quasi-Geostrophic model with large-scale orography. Advances in Atmospheric Sciences, 15 (03), 404-41.
Collings, I. L., & Grimshaw, R. (1980). The effect of topography on the stability of a barotropic coastal current. Dynamics of Atmospheres and Oceans, 5(2), 83-106.
Da, C. J. (2013). Dynamic modification of the shallow water equation on the slowly changing underlying surface condition. Acta Physica Sinica, 62(3), 039202.
Elfithri, R. (2017). Pahang flood disaster: The potential flood drivers. Malaysian Journal of Geosciences, 1(1) 34-37.
Erfen, H. F. W. S. (2017.) Geochemical characterization of sediments around Nukakatan valley, Tambunan, Sabah. Geological Behavior, 1(1)13-15.
Frederiksen, J. S. (1999). Subgrid-scale parameterizations of eddy-topographic force, eddy viscosity, and stochastic backscatter for flow over topography. Journal of the atmospheric sciences, 56(11), 1481-1494.
Holloway, G. (1992). Representing topographic stress for large-scale ocean models. Journal of Physical Oceanography, 22(9), 1033-1046.
Holloway, P. E., et al., 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. Journal of Physical Oceanography, 27(6), 871-896.
Jiang, X. (2000). A Barotropic Quasi-geostrophic model with large-scale topography, Friction and Heating. Journal of Tropical Meteorology, 6(01), 65-74.
La, V., & Paul, E. (1990). The western Mediterranean circulation experiment (WMCE): introduction. Journal of Geophysical Research: Oceans, 95(C2), 1511-1514.
Liu, S. K., & Liu, S. D. (1991). Atmospheric Dynamics. Beijing, BJ: Peking University Press.
Lu, K. L. (1987). The effects of orography on the solitary Rossby waves in a barotropic atmosphere. Acta Meteorologica Sinica, 45, 267-273.
Luo, D. H. (1990). Topographically forced Rossby wave instability and the development of blocking in the atmosphere. Advances in atmospheric sciences, 7(4), 433-440.
Marshall, D. (1995). Influence of topography on the large-scale ocean circulation. Journal of physical oceanography, 25(7), 1622-1635.
Pedlosky, J. (1974). Longshore currents, upwelling and bottom topography. Journal of Physical Oceanography, 4(2), 214-226.
Pedlosky, J. (1980). The destabilization of shear flow by topography. Journal of Physical Oceanography, 10(11), 1877-1880.
Pedlosky, J. (1987). Geophysical Fluid Dynamics second edition. Springer, New York, 57-246.
Rahim, I. A. (2017). Kampung Mesilou landslide: The controlling factors. Geological Behavior, 1(1) 19-21.
Roslee, R. (2017). GIS application for comprehensive spatial soil erosion analysis with MUSLE Model in Sandakan Town area, Sabah, Malaysia. Geological Behavior, 1(1) 01-05.
Roslee, R. (2017). Flood Potential Analysis (FPAn) using Geo-Spatial data in Penampang area, Sabah. Malaysian Journal of Geosciences, 1(1) 01-06.
Sherwin T. J., Vlasenko V. I., & Stashchuk, N. (2002). Along-slope generation as an explanation for some unusually large internal tides. Deep Sea Research Part I: Oceanographic Research Papers, 49(10), 1787-1799.
Song, J., et al., 2012. Beta effect and slowly changing topography Rossby waves in a shear flow. Acta Physica Sinica, 61(21), 210510, http://dx.doi.org/10.7498/aps.61.210510.
Song, J. (2014). Nonlinear Rossby waves excited slowly changing underlying surface and dissipation. Acta Physica Sinica, 63(6), 060401, http://dx.doi.org/10.7498/aps.63.060401.
Sou, T. (1996). Effects of topographic stress on Caribbean Sea circulation. Journal of Geophysical Research: Oceans, 101(C7), 16449-16453.
Taharin, M. R., & Roslee, R. (2017). Comparison of cohesion (c’), and angle of internal friction (Ф’) distribution in highland area of Kundasang by using ordinary Kriging and simple Kriging. Geological Behavior, 1(1) 16-18.
Treguier, A. M. (1989). Topographically generated steady currents in barotropic turbulence. Geophysical and Astrophysical Fluid Dynamics, 47, 43-68.
Yang, H. W. (2011). Forced solitary Rossby waves under the influence of slowly varying topography with time. Chinese Physics B, 20(11), 120203.
Yang, H. W. (2012). Generation of solitary Rossby waves by unstable topography. Communications in Theoretical Physics, 57(3), 473-476.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jiaqi Zhang, Ruigang Zhang, Liangui Yang. (2020). Topographic solitary waves by the shooting method and Fourier spectral method. Results in Physics, 16, p.102944. https://doi.org/10.1016/j.rinp.2020.102944.
2. Jie Wang, Ruigang Zhang, Liangui Yang. (2020). A Gardner evolution equation for topographic Rossby waves and its mechanical analysis. Applied Mathematics and Computation, 385, p.125426. https://doi.org/10.1016/j.amc.2020.125426.
3. Ruigang Zhang, Quansheng Liu, Liangui Yang. (2022). Numerical Fluid Dynamics. Forum for Interdisciplinary Mathematics. , p.69. https://doi.org/10.1007/978-981-16-9665-7_3.
4. Ruigang Zhang, Liangui Yang, Quansheng Liu, Xiaojun Yin. (2019). Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography. Applied Mathematics and Computation, 346, p.666. https://doi.org/10.1016/j.amc.2018.10.084.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.