Published
Microthermometry and Raman spectroscopy of fluid inclusions from El Vapor gold mineralizations, Colombia
Microtermometría y espectroscopía Raman de inclusiones fluidas de las mineralizaciones auríferas de El Vapor, Colombia
DOI:
https://doi.org/10.15446/esrj.v22n3.63442Keywords:
Fluid inclusions, Microthermometry, Raman spectroscopy, Gold mineralizations, El Vapor district, reduced fluids, Orogenic. (en)Inclusiones fluidas, Microtermometría, Espectroscopía Raman, Mineralizaciones Auríferas, Distrito de El Vapor, Fluidos Reducidos, Orogénico. (es)
Downloads
Epigenetic El Vapor gold mineralization is hosted by the Segovia batholith and sedimentary rocks at both sides of El Nús fault, in the eastern flank of the Colombian Andes central cordillera. Gold mineralization is composed by continuous and discontinuous sigmoidal and stockwork veins and veinlets from a few centimeters to two meters of thickness and by hydrothermal breccias. Ore mineralogy includes Pyrite + Galena + Sphalerite + Chalcopyrite + Pyrrhotite + Proustite - Pyrargyrite. Gold is recognized as inclusions within pyrite, between quartz crystals and as fractures filled within pyrite at a late stage of mineralization. The fluid inclusions in quartz veins occur as clusters of primary inclusions and alignments of secondary and pseudo-secondary inclusions. Based on petrography and Raman spectroscopy, four types of fluid inclusions could be recognized: (1) Type I inclusions, biphasic, liquid-rich, with CO2 (v) + N2 (v) + CH4 (v) + KCl + NaCl + H2O(L), primary inclusions, (2) Type II inclusions, multi-volatile, CO2(V) + CO2(L) + N2(V) + CH4(V) + KCl + NaCl + H2O(L), primary to pseudo-secondary inclusions, (3) biphasic, liquid-rich inclusions, composed of H2O(v) +H2O(L)+KCl+NaCl with secondary origin and two different times of formation (IIIA and IIIB) (4) Type IV inclusions, very rare, three-phasic, secondary inclusions and composed by S+H2O(V)+H2O(L)+KCl+ NaCl. The microthermometric and spectroscopic analysis of fluid inclusions indicates that fluids associated with the first event of mineralization identified in El Vapor have low to moderate salinities (3.5-9.2 wt%NaCl equiv.), with trapping temperatures between 214°C and 350°C and pressures between 0.5kbar and 2.9kbar. There is evidence of the isothermal fluid mixture, and fO2 changes per reaction of fluids in the carbonaceous shales of the Segovia sedimentary rocks could influence the process of gold deposition. Hydrothermal fluids from El Vapor were near neutrality and reduced; similar features have been found in orogenic deposits hosted by turbidite sequences around the world.
Las mineralizaciones epigenéticas de El Vapor se encuentran hospedadas en el Batolito de Segovia y rocas sedimentarias a ambos lados de la falla de El Nús, en el flanco oriental de la Cordillera Central de los Andes Colombianos. Las mineralizaciones auríferas están compuestas por venas y vetillas continuas y discontinuas, sigmoidales y en stockwork desde pocos centímetros hasta dos metros de espesor, así como por brechas hidrotermales.
Los minerales de mena incluyen Pirita + Galena + Esfalerita + Calcopirita + Pirrotina + Proustita – Pirargirita. Oro se presenta como inclusiones dentro de pirita, entre cristales de cuarzo y rellenando fracturas dentro de pirita, en un estadio tardío de mineralización.
Las inclusiones fluidas en las venas de cuarzo se presentan como agrupaciones de inclusiones primarias como alineaciones de inclusiones secundarias y pseudo-secundarias. Con base en petrografía y espectroscopía Raman, se identificaron cuatro tipos de inclusiones: (1) Tipo I, primarias, bifásicas, ricas en líquido, con CO2(v) + N2(v) + CH4(v) + KCl(AQ) + NaCl(AQ) + H2O(L),(2) Tipo II, primarias o pseudo-secundarias, multivolátiles, con presencia de CO2(V) + CO2(L) + N2(V) + CH4(V) + KCl(AQ) + NaCl(AQ) + H2O(L), (3) Tipo III, secundarias, bifásicas, ricas en líquido, compuestas por H2O(v) + H2O(L) + KCl(AQ) + NaCl(AQ), con dos temporalidades diferentes (IIIA y IIIB), (4) Tipo IV, muy escasas, de tres fases, secundarias y compuestas por S + H2O(V) + H2O(L) + KCl(AQ) + NaCl(AQ).
Los análisis microtermométricos y espectroscópicos de las inclusiones fluidas indican que el fluido hidrotermal relacionado con el primer evento de mineralización identificado en el El Vapor, presenta una salinidad baja a moderada (3.5-9.2 wt% NaCl equiv.), temperaturas de entrampamiento entre 214°C y 350°C y presiones mínimas de entrampamiento entre 0.5kbar y 2.9kbar. Debido a la inexistencia de inclusiones fluidas con grados variables de relleno y modos diferentes de homogenización, y teniendo en cuenta las variaciones de salinidad observadas en un rango restringido de temperaturas de homogenización, se propone que un proceso de mezcla isotermal de fluidos, junto con cambios en la fugacidad de oxígeno, generadas por la reacción de los fluidos con los shales carbonosos de las rocas sedimentarias de Segovia, pudieron influenciar el proceso de depósito del oro.
Los fluidos hidrotermales en El Vapor fueron reducidos y cercanos a la neutralidad, características similares han sido encontradas en depósitos orogénicos hospedados en secuencias turbidíticas alrededor del mundo.
References
Bakker, R. J. (1997). Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23, 1-18.
Bakker, R. J., & Brown, P. E. (2003). Computer modelling in fluid inclusion research. In: I. M. Samson, A. J. Anderson, & D. D. Marshall (Eds.), Fluid Inclusions, Analysis and Interpretation Short Course (175-212). Mineralogical Association of Canada.
Bakker, R. J., & Diamond, L.W. (2000). Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry. Geochimica et Cosmochimica Acta, 64, 1753-1764.
Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683–684.
Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D. & Steele-MacInnis M. (2014). Fluid Inclusions in Hydrothermal Ore Deposits. In H. D. Holland & K. K. Turekian (Eds.),
Treatise on Geochemistry Second Edition (119-142). Oxford: Elsevier.
Burke, E. A. J. (2001). Raman microspectrometry of fluid inclusions. Lithos 55, 139-158.
Cox, S. F., Sun, S. S., Etheridge, M. A., Wall, V. J., & Potter, T. F. (1995). Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia. Economic Geology, 90, 1722–1746.
Cox, S. F., Wall, V. J., Etheridge, M. A., & Potter, T. F. (1991a). Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan fold belt in central Victoria, Australia. Ore Geology Reviews, 6, 391–423.
Diamond, L. W. (1990). Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in Late-Alpine gold-quartz veins at Brusson, Val d'Ayas, NW Italian Alps. American Journal of Science, 290, 912-958.
Drew, L. J., Berger, B. R., & Kurbanov, N. K. (1996). Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11, 175-196.
Feininger, T., Barrero, D., & Castro, N. (1972). Geología de Antioquia y Caldas (Subzona II-B). Boletín Geológico Ingeominas 20(2), 1-173.
Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20.
Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions. In I. M. Samson, A. J. Anderson, & D. D. Marshall (Eds.), Fluid Inclusions, Analysis and Interpretation (9-53). Mineralogical Association of Canada.
González, H. (2001). Mapa Geológico del Departamento de Antioquia. Escala 1:400.000. Memoria Explicativa. Ingeominas, 240 p.
Graupner, T., Kempe, U., Spooner, E. T. C., Bray, C. J., Kremenetsky, A. A., Irmer, G., (2001). Microthermometric, laser Raman spectroscopic and volatile-ion chromatographic analysis of hydrothermal fluids in the Paleozoic Muruntau Au-bearing quartz vein ore field, Uzbekistan. Economic Geology, 96, 1-23.
Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7-27.
Hayashi, K. I., & Ohmoto, H. (1991). Solubility of gold in NaCl- and H2S-bearing aqueous solutions at 250-350°C. Geochimica et Cosmochimica Acta, 55, 2111-2126.
Jia, Y., Li, X., & Kerrich, R. (2000). A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the Bendigo gold field, Central Victoria, Australia. Economic Geology, 95, 467-494.
Johnson, E. L., & Hollister, L. S. (1995). Syndeformational fluid trapping in quartz: Determining the pressure-temperature conditions of deformation from fluid inclusions and the formation of pure CO2 fluid inclusions during grain boundary migration. Journal of Metamorphic Geology, 13, 239–249.
Peng, D. Y., & Robinson, D. B. (1976). A new two constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59-64.
Phillips, G. N., & Groves, D. I. (1984). The nature of Archean gold-bearing fluids as deduced from gold deposits of Western Australia. Geological Society of Australia Journal, 30, 25–40.
Ramboz, C., Pichavant, M., & Weisbrod, A. (1982). Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37, 29–48.
Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth & Planetary Science, 8, 263-301.
Roedder, E. (1984). Fluid inclusions. Mineralogical Society of America, 12, 644 p.
Seward, T. M. (1973). Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta, 37, 370-399.
Seward, T. M. (1984). The transport and deposition of gold in hydrothermal systems. In R.P Foster (Ed.) Gold’82: The geology, geochemistry and genesis of gold deposits (165-181).
Wilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.
Zhang, Y. G., & Frantz, J. D. (1987). Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions. Chemical Geology, 64, 335-350.
Zoheir, B. A., El-Shazly, A. K., Helba, B., Khalil, K. I., & Bodnar, R. J. (2008). Origin and evolution of the Um Egat and Dungash orogenic gold deposits, Egyptian eastern desert: evidence from fluid inclusions in quartz. Economic Geology, 103, 405-424.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carlos José Charry, Juan Carlos Molano, Leonardo Santacruz, Janeth Sepulveda. (2023). Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth Sciences Research Journal, 27(1), p.11. https://doi.org/10.15446/esrj.v27n1.102683.
2. Zhiyang Zhang, Haitao Wu, Weixing Liu. (2021). Effects of mooring line hydrodynamic coefficients and wave parameters on the floating production storage and offloading motions. Desalination and Water Treatment, 239, p.278. https://doi.org/10.5004/dwt.2021.27796.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.