Published

2019-01-01

Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana

Transformación coordinada entre información global y local basada en Redes Neuronales Artificiales con validación cruzada de k-iteraciones en Ghana

DOI:

https://doi.org/10.15446/esrj.v23n1.63860

Keywords:

Radial basis function neural network, Bursa-Wolf model, K-fold cross-validation, Coordinate transformation, Statistical Resampling (en)
función de base radial en redes neuronales, modelo Bursa-Wolf, validación cruzada de k-iteracciones, transformación coordinada, remuestreo estadístico, (es)

Downloads

Authors

  • Yao Yevenyo Ziggah China University of Geosciences (Wuhan); University of Mines and Technology https://orcid.org/0000-0002-9940-1845
  • Hu Youjian China University of Geosciences (Wuhan)
  • Alfonso Rodrigo Tierra Universidad de las Fuerzas Armadas ESPE
  • Prosper Basommi Laari University for Development Studies
The popularity of Artificial Neural Network (ANN) methodology has been growing in a wide variety of areas in geodesy and geospatial sciences. Its ability to perform coordinate transformation between different datums has been well documented in literature. In the application of the ANN methods for the coordinate transformation, only the train-test (hold-out cross-validation) approach has usually been used to evaluate their performance. Here, the data set is divided into two disjoint subsets thus, training (model building) and testing (model validation) respectively. However, one major drawback in the hold-out cross-validation procedure is inappropriate data partitioning. Improper split of the data could lead to a high variance and bias in the results generated. Besides, in a sparse dataset situation, the hold-out cross-validation is not suitable. For these reasons, the K-fold cross-validation approach has been recommended. Consequently, this study, for the first time, explored the potential of using K-fold cross-validation method in the performance assessment of radial basis function neural network and Bursa-Wolf model under data-insufficient situation in Ghana geodetic reference network. The statistical analysis of the results revealed that incorrect data partition could lead to a false reportage on the predictive performance of the transformation model. The findings revealed that the RBFNN and Bursa-Wolf model produced a transformation accuracy of 0.229 m and 0.469 m, respectively. It was also realised that a maximum horizontal error of 0.881 m and 2.131 m was given by the RBFNN and Bursa-Wolf. The obtained results per the cadastral surveying and plan production requirement set by the Ghana Survey and Mapping Division are applicable. This study will contribute to the usage of K-fold cross-validation approach in developing countries having the same sparse dataset situation like Ghana as well as in the geodetic sciences where ANN users seldom apply the statistical resampling technique.

La popularidad de la metodología de Redes Neuronales Artificiales está en crecimiento en varias áreas en geodesia y en las ciencias geoespaciales. Su capacidad de realizar una transformación coordinada entre diferente información ha sido bien documentada en la literatura. En la aplicación de métodos de Redes Neuronales Artificiales para la transformación coordinada solo se ha evaluado el desempeño del enfoque de prueba de adiestramiento (validación cruzada por método de retención). En este punto, la información se divide en dos subconjuntos diferentes: adiestramiento (modelo de construcción) y verificación (modelo de validación). Sin embargo, una desventaja en el procedimiento de validación cruzada por método de retención es inapropiada durante la división de información. Una partición no adecuada en la información podría llevar a una gran diferencia o a un sesgo en los resultados generados. Además, ante una situación de un conjunto de datos disperso la validación cruzada por método de retención no es adecuada. Por estas razones se recomienda la validación cruzada de k-iteraciones. Por consiguiente, este estudio, por primera vez, explora el potencial de usar el método por validación cruzada de k-iteraciones en la evaluación de ejecución de la función de base radial en redes neuronales y el modelo Bursa-Wolf en una situación de información insuficiente en la red de referencia geodética de Ghana. El análisis estadístico de los resultados muestra que una partición incorrecta de información puede llevar a un registro falso en la ejecución predictiva del modelo de transformación. Los resultados demuestran que la función radial y el modelo Bursa-Wolf producen un error posicional de media cuadrática horizontal de 0.797 m y 1.182 m, respectivamente. Los resultados del modelo radial por la medición cadastral concuerdan con los requerimientos del plan de producción instaurados por la divisón de mapeo del servicio geológico de Ghana. Este estudio contribuirá en la usabilidad del método de validación cruzada de k-iteracciones en países en desarrollo que tienen conjuntos de datos dispersos, como Ghana, y en las ciencias geodésicas donde los usuarios de redes neuronales casi nunca aplican la técnica estadística de remuestreo.

References

Annan, R. F., Ziggah, Y. Y., Ayer, J., & Odutola, C.A. (2016). A Hybridized Centroid Technique for 3D Molodensky-Badekas Coordinate Transformation in the Ghana Geodetic Reference Network using Total Least Squares Approach. South African Journal of Geomatics, 5, 3, 269-284.

Ayer, J. (2008). Transformation models and procedures for framework integration of Ghana geodetic network. The Ghana Surveyor, 1, 52-58.

Ayer, J., & Fosu, C. (2008). Map coordinates referencing and the use of GPS datasets in Ghana. Journal of Science and Technology, 28, 116-127.

Badekas, J. (1969). Investigations related to the establishment of a World Geodetic System. Technical Report. The Ohio State University, Deparment of Geodetic Science, Columbus, Ohio State, USA.

Baabereyir, A. (2009). Urban environmental problems in Ghana: case study of social and environmental injustice in solid waste management in Accra and Sekondi-Takoradi. PhD Dissertation, University of Nottingham, UK.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold cross-validation. Journal of Machine Learning Research, 5, 1089-1105.

Berry, L. (1995). Ghana: a country study. 3rd Edition. Federal Research Division, Library of Congress, USA.

Bowring, B.R. (1976). Transformation from spatial to geographical coordinates. Survey Review, 181, 323–327.

Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76, 503-514.

Bursa, M. (1962). The theory of the determination of the nonparallelism of the minor axis of the reference ellipsoid, Polar axis of the Earth, and initial astronomical and geodetic meridians from observation of artificial Earth satellites. Studia Geophysica et Geodaetica, 6, 209-214.

Constantin-Octavian, A. (2006). 3D Affine coordinate transformations. Master of Science Thesis in Geodesy No. 3091 TRITA-GIT EX 06-004, School of Architecture and the Built Environment, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.

Deakin, R. E. (2006). A Note on the Bursa-Wolf and Molodensky-Badekas Transformations. Technical Report, School of Mathematical and Geospatial Sciences, RMIT University, 1-21.

Dzidefo, A. (2011). Determination of transformation parameters between the World Geodetic System 1984 and the Ghana geodetic network. Masters Thesis, Kwame Nkrumah University of Science and Technology, Ghana.

ElSayed, M. S., & Ali, A. H. (2016). Performance Evaluation of Applying Fuzzy Multiple Regression Model to TLS in the Geodetic Coordinate Transformation. American Scientific Research Journal for Engineering, Technology and Sciences, 36-50.

Featherstone, W.E. (1996). A revised explanation of the Geocentric Datum of Australia and its effect upon mapping. The Australian Surveyor, 41, 121-130.

Fosu, C., Poku-Gyamfi, Y., & Hein, W. G. (2006). Global Navigation Satellite System (GNSS) - A Utility for Sustainable Development in Africa. 5th FIG Regional Conference on Promoting Land Administration and Good Governance, Workshop – AFREF I, Accra, Ghana, 1-12.

Ghilani, C. D. (2010). Adjustment Computations: Spatial Data Analysis. 5th Edition. John Wiley and Sons Inc., Hoboken, New Jersey, USA.

Golub, G. H., & Reinsch, C. (1970). Singular Value Decomposition and Least Squares Solutions. Numerische Mathematik, 14, 5, 403-420.

Gullu, M. (2010). Coordinate Transformation by Radial Basis Function Neural Network. Scientific Research and Essays, 5, 3141-3146.

Gullu, M., Yilmaz, M., Yilmaz, I., & Turgut, B. (2011). Datum Transformation by Artificial Neural Networks for Geographic Information Systems Applications. International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) Applications (ISEPP), Izmir-Turkey, 13-19.

Heiskanen, A. W., & Moritz, H. (1967). Physical Geodesy. San Francisco: W.H. Freeman and Co Ltd.

Jain, T., Singh, S. N., & Srivastava, S. C. (2011). Fast static available transfer capability determination using radial basis function neural network. Applied Soft Computing, 11, 2756-2764.

Jung, Y., & Hu, J. (2015). A K-fold averaging cross-validation procedure. Journal of nonparametric statistics, 27, 167-179.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI’95 proceedings of the 14th international joint Conference on Artificial Intelligence, 2, 1137-1143.

Konakoğlu, B., & Gökalp, E. (2016). A Study on 2D similarity transformation using multilayer perceptron neural networks and a performance comparison with conventional and robust outlier detection methods. Acta Montanistica Slovaca, 21, 4, 324-332.

Konakoğlu, B., Cakir, L., & Gökalp, E. (2016). 2D coordinates transformation using artificial neural networks. Geo Advances 2016: ISPRS Workshop on Multi-dimensional & Multi-scale Spatial Data Modeling, At Mimar Sinan Fine Arts University/Istanbul, Volume XLII-2/W1: 3rd International GeoAdvances Workshop.

Konaté, A. A., Pan, H., Fang, S., Asim, S., Ziggah, Y. Y., Deng, C., & Khan, N. (2015). Capability of self-organizing map neural network in geophysical log data classification: Case study from the CCSD-MH. Journal of Applied Geophysics, 118, 37-46.

Kotzev, V. (2013). Consultancy Service for the Selection of a New Projection System for Ghana. Technical Draft Final Reports, World Bank Second Land Administration Project (LAP-2), Ghana.

Kumi-Boateng, B., & Ziggah, Y. Y. (2016). Accuracy assessment of cartesian (X, Y, Z) to geodetic coordinates (φ, λ, h) transformation procedures in precise 3D coordinate transformation – A case study of Ghana geodetic reference network. Journal of Geosciences and Geomatics, 4, 1-7.

Laari, P. B., Ziggah, Y. Y., & Annan, R. F (2016). Determination of 3D Transformation Parameters for the Ghana Geodetic Reference Network using Ordinary Least Squares and Total Least Squares Techniques. International Journal of Geomatics and Geosciences, 7, 3, 245-261.

Lin, L. S., & Wang, Y. J. (2006). A Study on Cadastral Coordinate Transformation using Artificial Neural Network. Proceedings of the 27th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia, 1-6.

Markovsky, I., & Van Huffel, S. (2007). Overview of Total Least-Squares. Signal Processing, 87, 2283-2302.

Mihalache, R. M. (2012). Coordinate transformation for integrating map information in the new geocentric European system using artificial neural networks. GeoCAD, 1-8.

Molodensky, M. S., Yeremeyev, V., & Yurkina, M. (1962). Methods for study of the external Gravitational Field and Figure of the Earth. Technical report Office of Technical services, US Deparment of Commerce, Israel Program for Scientific Translations, Jerusalem, Israel, 248 pp (Russian).

Mugnier, J. C. (2000). OGP-Coordinate conversions and Transformations including formulae. COLUMN, Grids and Datums, The Republic of Ghana. Photogrammetric Engineering and Remote Sensing, 695-697.

Muller, V. A., & Hemond, F. H. (2013). Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta, 117, 112–118.

Paredes-Hernández, C. U., Salinas-Castillo, W. E., Guevara-Cortina, F., & Martínez-Becerra, X. (2013). Horizontal positional accuracy of Google Earth’s imagery over rural areas: a study case in Tamaulipas, Mexico. The Bulletin of Geodetic Sciences, 19, 588-601.

Poku-Gyamfi, Y. (2009). Establishment of GPS Reference Network in Ghana. PhD Dissertation, Universitat der Bundeswehr Munchen, Germany.

Reitermanová, Z. (2010). Data Splitting. In: Šafránková, J. and Pavlu, J. (Eds.), WDS 2010 proceedings of contributed papers, Part I: Mathematics and Computer Sciences, Matfyzpress, Prague, 31-36.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 36, 111–147.

Tierra, A., Dalazoana, R., & De Freitas, S. (2008). Using an Artificial Neural Network to Improve the Transformation of Coordinates between Classical Geodetic Reference Frames. Computers and Geosciences, 34, 181-189.

Tierra, A. R., De Freitas, S. R. C., & Guevara, P. M. (2009). Using an Artificial Neural Network to Transformation of Coordinates from PSAD56 to SIRGAS95. In: Drewes H. (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia, 134:173-178, Springer-Verlag Berlin Heidelberg, Germany.

Tierra, A., & Romero, R. (2014). Planes Coordinates Transformation between PSAD56 to SIRGAS using a Multilayer Artificial Neural Network. Geodesy and Cartography, 63, 199-209.

Turgut, B. (2010). A Back-Propagation Artificial Neural Network Approach for Three-Dimensional Coordinate Transformation. Scientific Research and Essays, 5, 3330-3335.

Urolagin, S., Prema, K. V., & Subba Reddy, N. V. (2011). Generalization Capability of Artificial Neural Network Incorporated with Pruning Method. In: Thilagam, P. S., Pias, A. R., Chandrasekaran, K. and Balakrishnan, N. (Eds.), Advanced Computing, Networking and Security. Lecture Notes in Computer Science, 7135, 171-178, Springer Berlin Heidelberg, Germany.

Van Huffel, S., & Vandewalle, J. (1991). The Total Least Squares Problem – Computational Aspects and Analysis, Frontiers in Applied Mathematics. SIAM, USA.

Varga, M., Grgić, M., & Bašić, T. (2017). Empirical comparison of the Geodetic Coordinate Transformation Models: a case study of Croatia. Survey Review, 49, 352, 15-27.

Veis, G. (1960). Geodetic uses of artificial satellites. Smithsonian contributions to Astrophysics, 3, 95-159.

Wolf, H. (1963). Geometric connection and reorientation of three-dimensional triangulation nets. Bulletin of Geodesy, 68, 165-169.

Yakubu, I., & Kumi-Boateng, B. (2015). Ramification of datum and ellipsoidal parameters on post processed differential global positioning system (DGPS) data – A case study. Ghana Mining Journal, 15, 1-9.

Yang, Y. X. (2009). Chinese geodetic coordinate system 2000. Chinese Science Bulletin, 54, 2714-2721.

Yilmaz, I., & Gullu, M. (2012). Georeferencing of Historical Maps using back propagation artificial neural network. Experimental Techniques, 36, 15-19.

Zaletnyik, P. (2004). Coordinate Transformation with Neural Networks and with Polynomials in Hungary. International Symposium on Modern Technologies, Education and Professional Practice in Geodesy and Related Fields, Sofia, Bulgaria, 471-479.

Ziggah, Y. Y., Youjian, H., Tierra, A., Konaté, A. A. & Hui, Z. (2016). Performance evaluation of artificial neural networks for planimetric coordinate transformation—a case study, Ghana. Arabian Journal of Geosciences, 9, 17,698, 1-16.

Ziggah, Y. Y., Youjian, H., Odutola, C. A., & Fan, D. L. (2013a). Determination of GPS Coordinate Transformation Parameters of Geodetic data between Reference Datums - A Case Study of Ghana Geodetic Reference Network. International Journal of Engineering Sciences & Research Technology, 2, 956-971.

Ziggah, Y. Y., Youjian, H., Odutola, C. A., & Nguyen, T. T. (2013b). Accuracy assessment of centroid computation methods in precise GPS coordinates transformation parameters determination- A case study, Ghana. European Scientific Journal, 9, 1857-7431.

Ziggah, Y. Y., Youjian, H., Laari, P. B., & Hui, Z. (2017a). Novel approach to improve geocentric translation model performance using artificial neural network technology. Boletim de Ciências Geodésicas, 23, 1, 213-233.

Ziggah, Y. Y., Ayer, J., Laari, P. B., & Frimpong, E. (2017b). Coordinate transformation using Featherstone and Vaníček proposed approach - a case study of Ghana geodetic reference network. Geoplanning: Journal of Geomatics and Planning, 4,

How to Cite

APA

Ziggah, Y. Y., Youjian, H., Tierra, A. R. and Laari, P. B. (2019). Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana. Earth Sciences Research Journal, 23(1), 67–77. https://doi.org/10.15446/esrj.v23n1.63860

ACM

[1]
Ziggah, Y.Y., Youjian, H., Tierra, A.R. and Laari, P.B. 2019. Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana. Earth Sciences Research Journal. 23, 1 (Jan. 2019), 67–77. DOI:https://doi.org/10.15446/esrj.v23n1.63860.

ACS

(1)
Ziggah, Y. Y.; Youjian, H.; Tierra, A. R.; Laari, P. B. Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana. Earth sci. res. j. 2019, 23, 67-77.

ABNT

ZIGGAH, Y. Y.; YOUJIAN, H.; TIERRA, A. R.; LAARI, P. B. Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana. Earth Sciences Research Journal, [S. l.], v. 23, n. 1, p. 67–77, 2019. DOI: 10.15446/esrj.v23n1.63860. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/63860. Acesso em: 27 jan. 2025.

Chicago

Ziggah, Yao Yevenyo, Hu Youjian, Alfonso Rodrigo Tierra, and Prosper Basommi Laari. 2019. “Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana”. Earth Sciences Research Journal 23 (1):67-77. https://doi.org/10.15446/esrj.v23n1.63860.

Harvard

Ziggah, Y. Y., Youjian, H., Tierra, A. R. and Laari, P. B. (2019) “Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana”, Earth Sciences Research Journal, 23(1), pp. 67–77. doi: 10.15446/esrj.v23n1.63860.

IEEE

[1]
Y. Y. Ziggah, H. Youjian, A. R. Tierra, and P. B. Laari, “Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana”, Earth sci. res. j., vol. 23, no. 1, pp. 67–77, Jan. 2019.

MLA

Ziggah, Y. Y., H. Youjian, A. R. Tierra, and P. B. Laari. “Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana”. Earth Sciences Research Journal, vol. 23, no. 1, Jan. 2019, pp. 67-77, doi:10.15446/esrj.v23n1.63860.

Turabian

Ziggah, Yao Yevenyo, Hu Youjian, Alfonso Rodrigo Tierra, and Prosper Basommi Laari. “Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana”. Earth Sciences Research Journal 23, no. 1 (January 1, 2019): 67–77. Accessed January 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/63860.

Vancouver

1.
Ziggah YY, Youjian H, Tierra AR, Laari PB. Coordinate Transformation between Global and Local Datums Based on Artificial Neural Network with K-Fold Cross-Validation: A Case Study, Ghana. Earth sci. res. j. [Internet]. 2019 Jan. 1 [cited 2025 Jan. 27];23(1):67-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/63860

Download Citation

CrossRef Cited-by

CrossRef citations27

1. E.M. Baglaeva, A.P. Sergeev, A.V. Shichkin, A.G. Buevich. (2021). The extraction of the training subset for the spatial distribution modelling of the heavy metals in topsoil. CATENA, 207, p.105699. https://doi.org/10.1016/j.catena.2021.105699.

2. Yihuan Zhou, Wanjiang Wang, Ke Wang, Junkang Song. (2022). Application of LightGBM Algorithm in the Initial Design of a Library in the Cold Area of China Based on Comprehensive Performance. Buildings, 12(9), p.1309. https://doi.org/10.3390/buildings12091309.

3. Berkant Konakoglu, Alper Akar. (2022). Prediction of geoid undulation using approaches based on GMDH, M5 model tree, MARS, GPR, and IDP. Acta Geodaetica et Geophysica, 57(2), p.293. https://doi.org/10.1007/s40328-022-00378-4.

4. Muhammad Irfan, Zubair Khaliq, Mohd Faisal, Muhammad Bilal Qadir, Fayyaz Ahmad, Zulfiqar Ali, Mabkhoot Alsaiari, Mohammed Jalalah, Farid A. Harraz. (2024). Investigating the impact of fiber and yarn structure on yarn tensile properties: A computational approach with artificial neural networks. Materials Today Communications, 40, p.109372. https://doi.org/10.1016/j.mtcomm.2024.109372.

5. Berkant Konakoglu. (2021). Prediction of geodetic point velocity using MLPNN, GRNN, and RBFNN models: a comparative study. Acta Geodaetica et Geophysica, 56(2), p.271. https://doi.org/10.1007/s40328-021-00336-6.

6. Berkant Konakoglu, Alper Akar. (2022). Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth Sciences Research Journal, 25(4) https://doi.org/10.15446/esrj.v25n4.91195.

7. Berkant KONAKOGLU. (2020). Çok Katmanlı Algılayıcı Yapay Sinir Ağı ile Jeodezik Elipsoidal Koordinatların (φ, λ, h) 3 Boyutlu Global Kartezyen Koordinatlara (X, Y, Z) Dönüşümü. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, https://doi.org/10.17714/gumusfenbil.712100.

8. Ikechukwu Kalu, Christopher E. Ndehedehe, Onuwa Okwuashi, Aniekan E. Eyoh. (2022). Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning. Applied Computing and Geosciences, 14, p.100086. https://doi.org/10.1016/j.acags.2022.100086.

9. A. S. Butorova, A. V. Shichkin, A. P. Sergeev, E. M. Baglaeva, A. G. Buevich. (2023). MODELING OF THE SPATIAL DISTRIBUTION OF CHROME AND MANGANESE IN SOIL: SELECTION OF A TRAINING SUBSET. Геоэкология. Инженерная геология. Гидрогеология. Геокриология, (5), p.88. https://doi.org/10.31857/S0869780923050028.

10. Ahmed Imad Abbas, Oday Y. M. Alhamadani, Mamoun Ubaid Mohammed. (2022). The application of an artificial neural network for 2D coordinate transformation. Journal of Intelligent Systems, 31(1), p.739. https://doi.org/10.1515/jisys-2022-0033.

11. Abubakr Hassan, Elhadi K. Mustafa, Yahaya Mahama, Mohamed A. Damos, Zhongshan Jiang, Lupeng Zhang. (2020). Analytical Study of 3D Transformation Parameters Between WGS84 and Adindan Datum Systems in Sudan. Arabian Journal for Science and Engineering, 45(1), p.351. https://doi.org/10.1007/s13369-019-04206-w.

12. Moses N. Kinyua, Arthur W. Sichangi, Moses K. Gachari. (2024). Development of ANN optimized affine-6 2D coordinate transformation model. Applied Geomatics, https://doi.org/10.1007/s12518-024-00600-8.

13. Di Wu, Ruopu Li, Banafsheh Rekabdar, Claire Talbert, Michael Edidem, Guangxing Wang. (2023). Classification of drainage crossings on high-resolution digital elevation models: A deep learning approach. GIScience & Remote Sensing, 60(1) https://doi.org/10.1080/15481603.2023.2230706.

14. Maan Habib, Ali Farghal, Aymen Taani. (2022). Developing low-cost automated tool for integrating maps with GNSS satellite positioning data. Journal of Geodetic Science, 12(1), p.141. https://doi.org/10.1515/jogs-2022-0134.

15. Vinicius Francisco Rofatto, Maria Luísa Silva Bonimani, Marcelo Tomio Matsuoka, Ivandro Klein, Caio Cesar de Campos. (2023). Resampling Methods in Neural Networks: From Point to Interval Application to Coordinate Transformation. Journal of Surveying Engineering, 149(1) https://doi.org/10.1061/JSUED2.SUENG-1366.

16. Chentao Huang, Yinhua Ma, Yuye Wang, Li Liu, Ao Mei. (2025). Reconstruction of unstable atmospheric surface layer streamwise turbulence based on multi-layer perceptron neural network architecture. European Journal of Mechanics - B/Fluids, 109, p.392. https://doi.org/10.1016/j.euromechflu.2024.11.006.

17. S. Farid F. Mojtahedi, Adel Ahmadihosseini, Hamed Sadeghi. (2023). An Artificial Intelligence Based Data-Driven Method for Forecasting Unconfined Compressive Strength of Cement Stabilized Soil by Deep Mixing Technique. Geotechnical and Geological Engineering, 41(1), p.491. https://doi.org/10.1007/s10706-022-02297-1.

18. Alexander P. Sergeev, Anastasia S. Butorova, Andrey V. Shichkin, Alexander G. Buevich, Elena M. Baglaeva, Irina Ev. Subbotina. (2022). Application of the permutation method to the assessment of predictive ability of the models of spatial distribution of copper and iron concentrations in the topsoil. Geoinformatika, (2), p.42. https://doi.org/10.47148/1609-364X-2022-2-42-53.

19. Visham Hurbungs, Vandana Bassoo, Tulsi Pawan Fowdur. (2022). An enhanced binary classifier for Edge devices. Microprocessors and Microsystems, 93, p.104596. https://doi.org/10.1016/j.micpro.2022.104596.

20. Aleksandr Sergeev, Elena Baglaeva, Andrey Shichkin, Alexander Buevich. (2024). The statistical analysis of training data representativeness for artificial neural networks: spatial distribution modelling of heavy metals in topsoil. Earth Science Informatics, 17(4), p.3493. https://doi.org/10.1007/s12145-024-01352-0.

21. Emmanuel Marfo, Gideon Danso-Abbeam, Samuel A. Donkoh, Makafui Adzo Dikro, Dennis Sedem Ehiakpor, Daniel Ofori, Manuel Tejada Moral. (2021). The complementarity and substitutability of sustainable agricultural practices among maize farm households under AFRINT regions in Ghana: Do the socioeconomic determinants confirm these?. Cogent Food & Agriculture, 7(1) https://doi.org/10.1080/23311932.2021.1969736.

22. Jamel Seidu, Anthony Ewusi, Jerry Samuel Yaw Kuma, Yao Yevenyo Ziggah, Hans-Jurgen Voigt. (2023). Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells. International Journal of River Basin Management, 21(4), p.639. https://doi.org/10.1080/15715124.2022.2079653.

23. Roman Shults, Asset Urazaliev, Andriy Annenkov, Olena Nesterenko, Oksana Kucherenko, Kateryna Kim. (2020). Different Approaches to Coordinate Transformation Parameters Determination of Nonhomogeneous Coordinate Systems. The 11th International Conference ENVIRONMENTAL ENGINEERING 11th ICEE SELECTED PAPERS . The 11th International Conference ENVIRONMENTAL ENGINEERING 11th ICEE SELECTED PAPERS . https://doi.org/10.3846/enviro.2020.687.

24. A. P. Sergeev, A. V. Shichkin, A. G. Buevich, E. M. Baglaeva. (2023). Counter-prediction approach to predict the missing values of a spatial series on the example of the dustiness in the snow cover. Modeling Earth Systems and Environment, 9(2), p.1523. https://doi.org/10.1007/s40808-022-01577-2.

25. Ikechukwu Kalu, Christopher E. Ndehedehe, Onuwa Okwuashi, Aniekan E. Eyoh. (2022). A comparison of existing transformation models to improve coordinate conversion between geodetic reference frames in Nigeria. Modeling Earth Systems and Environment, 8(1), p.611. https://doi.org/10.1007/s40808-021-01090-y.

26. Anastasia Butorova, Alexander Sergeev, Andrey Shichkin, Alexander Buevich, Elena Baglaeva, Marina Sergeeva. (2022). Counter-prediction method of the spatial series on the example of the dust content in the snow cover. Geoinformatika, (1), p.32. https://doi.org/10.47148/1609-364X-2022-1-32-39.

27. Bruno Póvoa Rodrigues, Vinicius Francisco Rofatto, Marcelo Tomio Matsuoka, Talita Teles Assunção. (2022). Resampling in neural networks with application to spatial analysis. Geo-spatial Information Science, 25(3), p.413. https://doi.org/10.1080/10095020.2022.2040923.

Dimensions

PlumX

Article abstract page views

894

Downloads

Download data is not yet available.