Published

2017-04-01

Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements

Método de control de calidad espacial para observaciones de temperatura superficial basado en múltiples elementos

DOI:

https://doi.org/10.15446/esrj.v21n2.65185

Keywords:

Surface air temperature, Quality control, Random Forest, Principal component analysis (en)
Temperatura el aire de la superficie, control de calidad, bosques aleatorios, análisis de componentes principales (es)

Downloads

Authors

  • Xiaoling Ye School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Xing Yang School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Xiong Xiong School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Shuai Yang School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Yang Chen School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China

Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations.

El control de calidad puede mejorar efectivamente la calidad de las observaciones meteorológicas. Para asegurar la estabilidad y efectividad de un modelo de control de calidad bajo condiciones diferentes de terreno y climáticas es necesario estructurar un esquema con una fuerte habilidad de generalización. Algoritmos como el método de bosques aleatorios (del inglés Random Forest) cumplen con estas condiciones. Sin embargo, los algoritmos de maquinas de aprendizaje son más lentos que los modelos matemáticos tradicionales. En este artículo se propone un algoritmo de control de calidad tipo bosques aleatorios basado en el Análisis de Componentes Principales (PCA-RF). Se seleccionaron 15 estaciones objetivo bajo diferentes condiciones climáticas y geomorfológicas y se evaluaron con observaciones realizadas cuatro veces por día en estaciones vecinas desde 2005 hasta 2014. Los resultados muestran que usando PCA para analizar la composición elemental y seleccionar elementos con factores de correlación alta, al igual que la aplicación del algoritmo Random Forest, se puede reducir efectivamente el tiempo de ejecución y mantener la exactitud del modelo. La dependencia de la muestra de prueba, la exactitud del modelo de predicción y la tasa de detección de error del modelo PCA-RF son superiores a aquellos del método de Regresión Espacial. Por lo tanto, el método PCA-RF es un mejor modelo para el control de calidad de elementos múltiples en las observaciones superficiales de aire y temperatura.

References

Allen, R.G., et al. “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.” FAO, Rome 300 (1998): D05109.

Asis J., Tahir S.H., Rahim A.R., Konjing Z., Kob R.C., Tjia H.D., “Smaller benthic foraminifera Analysis of Kudat Formation, Kudat, Sabah: Preliminary Interpretation.” Geological Behavior 1 (2017): 27-29

Baker, N.L., “Quality control for the navy operational atmospheric database.” Weather and Forecasting 7 (1992): 250-261.

Barnes, S. L., “A technique for maximizing details in numerical weather map analysis.” Journal of Applied Meteorology 3 (1964): 396-409.

Cheng A.R., Lee T.H., Ku H.I., Chen Y.W., “Quality Control Program for Real-Time Hourly Temperature Observation in Taiwan.” Journal of Atmospheric and Oceanic Technology 33 (2016): 953-976.

Cheng W., Zhou C., Chai H., Zhao S., Li B., “Quantitative Extraction and Analysis of Basic Morphological Types of Land Geomorphology in China.” Journal of Geo-Information Science (in Chinese) 6 (2009): 725-736.

Cutler D.R., Edwards T.C., Beard K.H., Cutler A., Hess K.T., Gibson J., Lawler J.J., “Random forests for classification in ecology.” Ecology 88 (2007): 2783-2792.

Feng S., Hu Q., Qian W., “Quality control of daily meteorological data in China, 1951–2000: a new dataset.” International Journal of Climatology 24 (2004): 853-870.

Forsythe, W.C., Rykiel, E.J., Stahl, R.S., Wy, H.I., Schoolfield, R.M. “Amodel comparision for daylength as a function of latitude and day of year.” Ecological Moelling 80 (1995): 87-95.

Gandin, L.S., “Complex quality control of meteorological observations.” Monthly Weather Review 116 (1988) 1137-1156.

He Q., Wang Z., He J., “Bias Correction for Retrieval of Atmospheric Parameters from the Microwave Humidity and Temperature Sounder Onboard the Fengyun-3C Satellite.” Atmosphere 7 (2016): 156.

Hu, Q., Feng, S., Schaefer, G., “Quality Control for USDA NRCS SM-ST Network Soil Temperatures: A Method and a Dataset*.” Journal of Applied Meteorology 41 (2002): 607-619.

Hubbard K., Goddard S., Sorensen W., Wells N., Osugi T., “Performance of quality assurance procedures for an applied climate information system.” Journal of Atmospheric and Oceanic Technology 22 (2005): 105-112.

Hubbard K.G., Guttman N.B., You J., Chen Z., “An improved QC process for temperature in the daily cooperative weather observations.” Journal of Atmospheric and Oceanic Technology 24 (2007): 206-213.

Hubbard K.G., You J., “Sensitivity analysis of quality assurance using the spatial regression approach-A case study of the maximum/minimum air temperature.” Journal of Atmospheric and Oceanic Technology 22 (2005): 1520-1530.

Ingleby N.B. and Lorenc A.C., “Bayesian quality control using multivariate normal distributions.” Quarterly Journal of the Royal Meteorological Society 119 (1993): 1195-1225.

Irannezhad M., Marttila H., Chen D., Kløve B., “Century-long variability and trends in daily precipitation characteristics at three Finnish stations.” Advance in Climate Change Research (2016).

Jiang G.J., Lv H.D., Liu L., “Process safety evaluation model based on LEC and Grey Theory.” Journal of Mechanical Engineering Research and Developments, 39(2016): 24-29.

Ridzuan A.A., Zahar U.A.U., Noor N.A.M., “Association of evacuation dimensions towards risk perception of the Malaysian students who studied at Jakarta, Medan, and Acheh in Indonesia.” Malaysian Journal of Geoscience, 1 (2017): 07-12.

Kubecka P., “A possible world record maximum natural ground surface temperature.” Weather 56 (2001): 218-221.

Lanzante, J. R., “Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data.” International Journal of Climatology 16 (1996): 1197-1226.

Li B., Pan B., Cheng W., Han J., Qi D., Zhu C., “Research on geomorphological regionalization of China.” Acta Geographica Sinica (in Chinese) 68 (2013): 291-306.

Lloyd S., Mohseni M., Rebentrost P., “Quantum principal component analysis.” Nature Physics 10 (2014): 631-633.

Lorenc A., Hammon O., “Objective quality control of observations using Bayesian methods. Theory, and a practical implementation.” Quarterly Journal of the Royal Meteorological Society 114 (1988): 515-543.

Rahim I.A., Usli M.N.R., “Slope stability study around kampung Kuala Abai, Kota Belud, Sabah, Malaysia.” Malaysian Journal of Geoscience 1 (2017): 38-42.

Rahmati O., Pourghasemi H.R., Melesse A.M., “Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran.” Catena 137 (2016): 360-372.

Mi C., et al., “A novel experimental teaching approach for electrical engineering based on semi-physical simulation.” World Transactions on Engineering and Technology Education, 12 (2014): 779-783.

Reek T., Doty S.R., Owen T.W., “A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network.” Bulletin of the American Meteorological Society 73 (1992): 753-762.

Scornet E., Biau G., Vert J.-P., “Consistency of random forests.” The Annals of Statistics 43 (2015): 1716-1741.

Shafer, M.A., Fiebrich, C.A., Arndt, D.S., Fredrickson, S.E., Hughes, T.W., “Quality assurance procedures in the Oklahoma Mesonetwork.” Journal of Atmospheric and Oceanic Technology 17 (2000): 474-494.

Shi-wei T., Qi-qin Z., Zhi-fang X., Min H. “Quality control schemes and its application to automatic surface weather observation system.” Plateau Meteorology (in Chinese) 5 (2009): 029.

Shlens J., “A tutorial on principal component analysis.” arXiv preprint arXiv (2014): 14041100.

Wade C.G., “A quality control program for surface mesometeorological data.” Journal of Atmospheric and Oceanic Technology 4 (1987): 435-453.

Xu C.D., Wang J.F., Hu M.G., Li Q.X., “Estimation of Uncertainty in Temperature Observations Made at Meteorological Stations Using a Probabilistic Spatiotemporal Approach*.” Journal of Applied Meteorology and Climatology 53 (2014): 1538-1546.

Xu, Z., Wang, Y., Fan, G., “A two-stage quality control method for 2-m temperature observations using biweight means and a progressive EOF analysis.” Monthly Weather Review 141 (2013) 798-808.

Yang L., Yan H., Xu Y., Lam J.C. “Residential thermal environment in cold climates at high altitudes and building energy use implications.” Energy and Buildings 62 (2013): 139-145.

You L.K., Rahim I.A., “Application of GSI system for slope stability studies on selected slopes of the crocker formation in Kota Kinabalu area, Sabah.” Geological Behavior 1 (2017): 10-12.

Zheng J., Yin Y., Li B., “A new scheme for climate regionalization in China.” Acta Geographica Sinica (in Chinese) 65 (2010): 3-12

How to Cite

APA

Ye, X., Yang, X., Xiong, X., Yang, S. and Chen, Y. (2017). Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, 21(2), 101–107. https://doi.org/10.15446/esrj.v21n2.65185

ACM

[1]
Ye, X., Yang, X., Xiong, X., Yang, S. and Chen, Y. 2017. Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal. 21, 2 (Apr. 2017), 101–107. DOI:https://doi.org/10.15446/esrj.v21n2.65185.

ACS

(1)
Ye, X.; Yang, X.; Xiong, X.; Yang, S.; Chen, Y. Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth sci. res. j. 2017, 21, 101-107.

ABNT

YE, X.; YANG, X.; XIONG, X.; YANG, S.; CHEN, Y. Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, [S. l.], v. 21, n. 2, p. 101–107, 2017. DOI: 10.15446/esrj.v21n2.65185. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/65185. Acesso em: 11 jan. 2025.

Chicago

Ye, Xiaoling, Xing Yang, Xiong Xiong, Shuai Yang, and Yang Chen. 2017. “Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements”. Earth Sciences Research Journal 21 (2):101-7. https://doi.org/10.15446/esrj.v21n2.65185.

Harvard

Ye, X., Yang, X., Xiong, X., Yang, S. and Chen, Y. (2017) “Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements”, Earth Sciences Research Journal, 21(2), pp. 101–107. doi: 10.15446/esrj.v21n2.65185.

IEEE

[1]
X. Ye, X. Yang, X. Xiong, S. Yang, and Y. Chen, “Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements”, Earth sci. res. j., vol. 21, no. 2, pp. 101–107, Apr. 2017.

MLA

Ye, X., X. Yang, X. Xiong, S. Yang, and Y. Chen. “Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements”. Earth Sciences Research Journal, vol. 21, no. 2, Apr. 2017, pp. 101-7, doi:10.15446/esrj.v21n2.65185.

Turabian

Ye, Xiaoling, Xing Yang, Xiong Xiong, Shuai Yang, and Yang Chen. “Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements”. Earth Sciences Research Journal 21, no. 2 (April 1, 2017): 101–107. Accessed January 11, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/65185.

Vancouver

1.
Ye X, Yang X, Xiong X, Yang S, Chen Y. Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth sci. res. j. [Internet]. 2017 Apr. 1 [cited 2025 Jan. 11];21(2):101-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/65185

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

450

Downloads

Download data is not yet available.