Published

2017-04-01

Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China

Origen de las dinámicas metalogénicas para el yacimiento de cobre y oro Ga'erqiong en Tibet, China

DOI:

https://doi.org/10.15446/esrj.v21n2.65192

Keywords:

Tibet, Zircon U-Pb Chronology, Geochemistry, Metallogenic Dynamics, Ga’erqiong Cu-Au Deposit (en)
Tibet, datación uranio-plomo, geoquímica, dinámicas metalogénicas, depósito de cobre y oro Ga'erqiong (es)

Downloads

Authors

  • Yuan Ouyang Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of the China, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Wunian Yang Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of the China, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Hanxiao Huang Chengdu Center, China Geological Survey, Chengdu 610081, China
  • Hong Liu Chengdu Center, China Geological Survey, Chengdu 610081, China
  • Jianlong Zhang Chengdu Center, China Geological Survey, Chengdu 610081, China
  • Jianhua Zhang Chengdu Center, China Geological Survey, Chengdu 610081, China

The Ga’erqiong Cu-Au deposit, which sits on the north side of the Coqên-Xainzamagmatite belt, is a large-scale skarn-type deposit, whose ore body has formed in the skarn zone in the contact part of quartz diorite and marble of Duoai formation or the cracks of quartz diorite. Its mineralization is closely related to quartz diorite. And granite porphyry-related molybdenum ore still exists in its deep part. Currently, there are disputes about the metallogenic dynamics background of this deposit. From previous studies, this paper carried out zircon LA-LCPMS U-Pb dating and petrogeochemistry study for quartz diorite of Ga’erqiong Cu-Au deposit. The testing result indicates: quartz diorite and granite porphyry were formed respectively in 88±2Ma and 83±1Ma, belonging to the magmatic activity of the early stage of Upper Cretaceous; quartz diorite and granite porphyry have geochemical characteristics similar to those of island arc rock of subduction zone and geochemical indexes similar to “adakite.” Combining with the regional tectonic evolution, we think that quartz diorite and granite porphyry were all formed in the extension environment after the collision of Lhasa block and Qiangtang block. Quartz diorite is the result of the migmatization of basic melt and acid melt evoked by asthenosphere material raise caused by lower crustal delamination; the formation of granite porphyry may be crust-mantle material’s partial melting results due to delaminated lower crustal. Therefore, Ga’erqiongskarn-type Cu-Au deposit belongs to the metallogenic response to the collisional orogeny in the closing process of Meso-Tethys.

El yacimiento de cobre y oro Ga'erqiong, que se ubica en el lado norte del cinturón Coqên-Xainzamagmatite, es un depósito tipo skarn a gran escala cuyo cuerpo mineral se formó en la zona Skarn, en la parte de contacto del cuarzo de diorita y mármol de la formación Duoai y de las grietas de cuarzo de diorita. Su mineralización está cercanamente relacionada a los cuarzos de diorita. La mena de molidbeno granítico relacionada a los pórfidos tiene presencia en estas zonas profundas. Actualmente, se presentan varias discusiones sobre el origen de las dinámicas metalogénicas de este yacimiento. Con base en trabajos previos, este estudio determinó la edad del circón uranio-plomo con la técnica LA-ICPMS y analizó la petrogeoquímica de cuarzos de diorita para el yacimiento Ga'erqiong. Los resultados del análisis indican que los cuarzos de diorita y los graníticos pórfidos se formaron en 88±2Ma y 83±1Ma, respectivamente, y pertenecen a la actividad magmática de la edad temprana del Cretácico Superior; los cuarzos de diorita y los graníticos pórfidos tienen características geoquímicas similares a aquellas de las rocas del arco insular en la zona de subducción e índice geoquímicos similares a la "adakita". En combinación con la evolución de la tectónica regional, se concluye que los cuarzos de diorita y los graníticos pórfidos se formaron en el ambiente extensivo tras la colisión de los bloques Lhasa y Qiantang. Los cuarzos de diorita son el resultado de la migmatización de fundición básica y fundición ácida suscitada por el material elevado a la astenosfera gracias a un deslaminado menor de la corteza; la formación de los graníticos pórfidos podría ser el resultado de la fundición parcial de material en el manto de la corteza debido a un deslaminado menor en la corteza. Además, el depósito Ga'erqiong corresponde a la respuesta metalogénica de la orogénesis colisional en el proceso de cierre del Mesotetis.

References

Asis, J., Tahir, S. H., Rahim, A. R., Konjing, Z., Kob, R. C., & Tjia, H. D. (2017). Smaller benthic foraminifera Analysis of Kudat Formation, Kudat, Sabah: Preliminary Interpretation. Geological Behavior, 1(1), 27-29.

Boynton, W. V. (1984). Geochemistry of the rare earth elements: Meteorite studies. In: Henderson, P. (ed.). Rare Earth Element Geochemistry. Elsevier, 36(6), 323-338.

Chen, H. A., Zhu, X. P., Ma, D. F., Huang, H. X., Li, G. M., Li Y.B., ... Liu, C. Q. (2013). Geochronology and geochemistry of the Bolong porphyry Cu- Au deposit, Tibet and its mineralizing significance. Acta Geologica Sinica, 87(10), 1593-1611.

Compston, W., Williams, I. S., & Kirschvink, J. L. (1992). Zircon U-Pb AGES for the early cambrian time-scale. Journal of the Geological Society, 149(2), 171-184.

Coulon, C., Maluski, H., & Bollinger, C. (1986). Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39 Ar-40 Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3), 281-302.

Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.

Deng, S. L., Tang, J. X., Li, Z. J., Yao, X. F., & Wang, Y. (2011). Geochemical characteristics of rock mass in the Gaerqiong Cu-Au deposit, Tibet. Journal of Chengdu University of Technology (Natural Science Edition), 38 (1), 85-91.

Geng, Q. R., Pan, G. T., Wang, L. Q., Peng, Z. M., & Zhang, Z. (2011). Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet. Geological Bulletin of China, 30(8), 1261-1274.

Harris, N., Inger, S., & Ronghua, X. (1990). Cretaceous plutonism in Central Tibet: an example of post-collision magmatism. Journal of Volcanology and Geothermal Research, 44(1), 21-32.

Huang, H. X., Li, G. M., Liu, B., Dong, S. L., Shi, H. Z., Zhang, Z. L., & Fan, A. H. (2012). Zircon U-Pb Geochronology and Geochemistry of the Tiangongnile Skarn-type Cu-Au Deposit in Zhongba County, Tibet: Their Genetic and Tectonic Setting Significance. Acta Geoscientica Sinica, 33(4), 424-434.

Huang, H. X., Li, G. M., Liu, B., Zhang, Z. L., Ma, D., Qu, Z., Xiao, W. F., & Liu, H. (2014). Discovery of Shangxu orogenic type gold deposit in northern Tiber and its significance. Mineral Deposits, 33(3), 486-496.

Lei, C. Y., Li, Z. J., Zhang, Z., Hu, Z. H., Wang, H. X., & Song, J. L. (2012). Geochemical Characteristics and Geodynamic Significance of the Granites in the Ga’erqiong Cu-Au deposit, Tibet. Acta Geoscientica Sinica, 33(4), 601-612.

Li, Z. J., Tang, J. X., Yao, X. F., Duo, J., Liu, H. F., Deng, S. L., ... Hu, Z. H. (2011). Geological characteristics and prospecting potential of Gaerqiong copper-gold polymetallic deposit in Ali District, northern Tibet. Mineral Deposits, 30(6), 1149-1153.

Liu, H., Huang, H. X., Li, G. M., Xiao, W. F., Zhang, Z. L., Liu, B., ... Ma, D. (2015). Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet. Geology in China, 42(4), 1126-1136.

Ludwig K. R. (2003). User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, 1-70.

Lv, L. N., Cui, Y. B., Song, L., Zhao, Y. Y., Qu, X. M., & Wang, J.P. (2011). Geochemical characteristics and zircon LA- ICP -MS U-Pb dating of Galae skarn gold (copper) deposit, Tibet and its significance. Earth Science Frontiers, 18 (5),224-242.

Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin Journal, 101, 635-643.

Middlemost, E. A. K. (1985). Magmas and Magmatic Rocks. London: Longman. Pag. 266.

Pan, G. T., Mo, X. X., Hou, Z. Q., Zhu, D. C., Wang, L. Q., Li, G. M., ... Liao, Z. L. (2007). Spatial-temporal framewoke of Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3), 521-533.

Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25,956-983.

Peccerillo, R., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.

Plank, T. (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921-944.

Qu, X. M., Xin, H. B., Xu, W. Y., Yang, Z. S., & Li, Z. (2006). Discovery and significance of copper-bearing bimodal rock series in Coqin area of Tibet. Acta Petrologica Sinica, 22(3), 707-716.

Qu, X. M., Wang, R. J., Xin, H. B., Zhao, Y. Y., & Fan, X. T. (2009). Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica, 38(6), 523-535.

Rahim, I. A., & Usli, M. N. R. (2017). Slope stability study around kampung Kuala Abai, Kota Belud, Sabah, Malaysia. Malaysian Journal of Geoscience, 1(1), 38-42.

Ridzuan, A. A., Zahar, U. A. U., & Noor, N. A. M. (2017). Association of evacuation dimensions towards risk perception of the Malaysian students who studied at Jakarta, Medan, and Acheh in Indonesia. Malaysian Journal of Geoscience, 1(1), 07-12.

Sun, S. S., & Mchdonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders, A. D. & Norry, M. J., (eds.). Magmatism in the Ocean Basins, Geological Society Special Pulication, 42, 303-345.

Tang, J. X., Zhang, Z., Li, Z. J., Sun, Y., Yao, X. F., Hu, Z. H., ... He L. (2013). The Metallogensis, Deposit Model and Prospecting Direction of the Ga’erqiong-Galale Copper-gold Ore Field, Tibet. Acta Geoscientica Sinica, 34(4),385-394.

Wang, W., Zeng, L. S., Liu, J., Xiao, P., & Gao, L. (2013). The late Cretaceous andesite Shiying and determining the geochemical characteristics in Cuoqin, Tibet. Chinese Journal of Geology, 48(2), 484-500.

Xiao, Y. F., Sun, Y., Wang, Q., Li, Z. J., Wang, Y. L., Zhang, S. M., ... He J. L. (2012). The discovery of rare intermetallic compounds (Ni-Cr-Fe, Cu-Zn) in the Garqiong copper-gold deposit of Tibet. Geology in China, 39(5), 1311-1317.

Yao, X. F., Tang, J. X., Li, Z. J., Deng, S. L., Ding, S., Hu, Z. H., & Zhang Z. (2012). Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and It's Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf Isotope Characteristics. Journal of Jilin University(Earth Science Edition), (S2): 188-197.

Yao, X. F., Tang, J. X., Li, Z. J., Deng, S. L., Ding, S., Hu, Z. H., & Zhang Z. (2013). The Redefinition of the Ore-forming Porphyrys Age in Ga’erqiong Skarn-type Gold—Copper Deposit, Western Bangong Lake-Nujiang River Metallogenic Belt, Xizang(Tibet). Geological Review, 59(1), 193-200.

You, L. K., & Rahim, I. A. (2017). Application of GSI system for slope stability studies on selected slopes of the crocker formation in Kota Kinabalu area, Sabah. Geological Behavior, 1(1), 10-12.

Zhang, Z., Tang, J. X., Chen, Y. C., Li, Z. J., Song, J. L., Yao, X. F., ... Wang, H. X. (2013). Skarn mineral characteristics of the Gaerqiong Cu-Au deposit in Bangong Co-Nujiang River suture zone, Tibet. Acta Petrologica Et Mineralogica, 32(3), 305-317.

Zhao, Z. H. (2010). Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis. Earth Science Frontiers, 17(1), 267-286.

Zhu, D. C., Mo, X. X., Zhao, Z. D., Niu, Y. L., Pan, G. T., Wang, L. Q., & Liao Z. L. (2009). Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16(2),001-020.

Zhu, D. C., Zhao, Z. D., & Niu, Y. L. (2001). The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1), 241-255.

Zorpi, M. J., Coulon, C., & Orsini, J. B. (1991). Hybridization between felsic and mafic magmas in calc-alkaline granitoids: a case study in northern Sardinia, Italy. Chemical Geology, 92, 45-86.

How to Cite

APA

Ouyang, Y., Yang, W., Huang, H., Liu, H., Zhang, J. and Zhang, J. (2017). Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China. Earth Sciences Research Journal, 21(2), 59–65. https://doi.org/10.15446/esrj.v21n2.65192

ACM

[1]
Ouyang, Y., Yang, W., Huang, H., Liu, H., Zhang, J. and Zhang, J. 2017. Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China. Earth Sciences Research Journal. 21, 2 (Apr. 2017), 59–65. DOI:https://doi.org/10.15446/esrj.v21n2.65192.

ACS

(1)
Ouyang, Y.; Yang, W.; Huang, H.; Liu, H.; Zhang, J.; Zhang, J. Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China. Earth sci. res. j. 2017, 21, 59-65.

ABNT

OUYANG, Y.; YANG, W.; HUANG, H.; LIU, H.; ZHANG, J.; ZHANG, J. Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China. Earth Sciences Research Journal, [S. l.], v. 21, n. 2, p. 59–65, 2017. DOI: 10.15446/esrj.v21n2.65192. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/65192. Acesso em: 28 mar. 2024.

Chicago

Ouyang, Yuan, Wunian Yang, Hanxiao Huang, Hong Liu, Jianlong Zhang, and Jianhua Zhang. 2017. “Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China”. Earth Sciences Research Journal 21 (2):59-65. https://doi.org/10.15446/esrj.v21n2.65192.

Harvard

Ouyang, Y., Yang, W., Huang, H., Liu, H., Zhang, J. and Zhang, J. (2017) “Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China”, Earth Sciences Research Journal, 21(2), pp. 59–65. doi: 10.15446/esrj.v21n2.65192.

IEEE

[1]
Y. Ouyang, W. Yang, H. Huang, H. Liu, J. Zhang, and J. Zhang, “Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China”, Earth sci. res. j., vol. 21, no. 2, pp. 59–65, Apr. 2017.

MLA

Ouyang, Y., W. Yang, H. Huang, H. Liu, J. Zhang, and J. Zhang. “Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China”. Earth Sciences Research Journal, vol. 21, no. 2, Apr. 2017, pp. 59-65, doi:10.15446/esrj.v21n2.65192.

Turabian

Ouyang, Yuan, Wunian Yang, Hanxiao Huang, Hong Liu, Jianlong Zhang, and Jianhua Zhang. “Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China”. Earth Sciences Research Journal 21, no. 2 (April 1, 2017): 59–65. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/65192.

Vancouver

1.
Ouyang Y, Yang W, Huang H, Liu H, Zhang J, Zhang J. Metallogenic Dynamics Background of Ga’erqiong Cu-Au Deposit in Tibet, China. Earth sci. res. j. [Internet]. 2017 Apr. 1 [cited 2024 Mar. 28];21(2):59-65. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/65192

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Xinxin Wang, Guoqiang Yan, Hong Liu, Hanxiao Huang, Yang Lai, Enyuan Tian, Yuan Ouyang. (2021). 中拉萨地块晚白垩世曲桑格勒花岗岩的成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素的约束. Earth Science-Journal of China University of Geosciences, 46(8), p.2832. https://doi.org/10.3799/dqkx.2020.278.

2. LIU Hong, LI GuanMing, LI WenChang, HUANG HanXiao, LI YouGuo, OUYANG Yuan, ZHANG XiangFei, ZHOU Qing. (2022). Petrogenesis and tectonic setting of the late Early Cretaceous Kong Co A-type granite in the northern margin of Central Lhasa Subterrane, Tibet. Acta Petrologica Sinica, 38(1), p.230. https://doi.org/10.18654/1000-0569/2022.01.15.

3. Hong LIU, Youguo LI, Wenchang LI, Guangming LI, Hanxiao HUANG, Dongfang MA, Yong HUANG, Qing ZHOU, Jiangang FU. (2022). Petrogenesis of an Early Cretaceous Xiabie Co I‐type Granite in Southern Qiangtang, Tibet: Evidence from Geochemistry, Geochronology, Rb‐Sr, Sm‐Nd, Lu‐Hf and Pb isotopes. Acta Geologica Sinica - English Edition, 96(3), p.919. https://doi.org/10.1111/1755-6724.14777.

4. Hong Liu, You-Guo Li, Wen-Chang Li, Guang-Ming Li, Dong-Fang Ma, Yuan Ouyang, Han-Xiao Huang, Zhi-Lin Zhang, Tong Li, Jun-Yi Wu. (2022). Petrogenesis of the late Cretaceous Budongla Mg-rich monzodiorite pluton in the central Lhasa subterrane, Tibet, China: Whole-rock geochemistry, zircon U-Pb dating, and zircon Lu-Hf isotopes. Frontiers in Earth Science, 10 https://doi.org/10.3389/feart.2022.927695.

5. Hong LIU, Guangming LI, Hanxiao HUANG, Huawen CAO, Qian YUAN, Yingxu LI, Yuan OUYANG, Shuangshuang LAN, Menghong LÜ, Guoqiang YAN. (2018). Petrogenesis of Late Cretaceous Jiangla'angzong I‐Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from Whole‐Rock Geochemistry, Zircon U‐Pb Geochronology, and Sr‐Nd‐Pb‐Hf Isotopes. Acta Geologica Sinica - English Edition, 92(4), p.1396. https://doi.org/10.1111/1755-6724.13634.

Dimensions

PlumX

Article abstract page views

457

Downloads

Download data is not yet available.