Published
Online Outlier Detection for Time-varying Time Series on Improved ARHMM in Geological Mineral Grade Analysis Process
Detección en tiempo real de valores atípicos sobre series de tiempo variable en ARHMM mejorado durante el proceso de análisis de grado mineralógico
DOI:
https://doi.org/10.15446/esrj.v21n3.65215Keywords:
ARHMM, BDT, KICvc, outlier detection, online detection. (en)Modelo autoregresivo oculto de Markov, detección en tiempo real, Brockwell-Dahlhaus-Trindade, (es)
Downloads
Given the difficulty of accurate online detection for massive data collecting real-timely in a strong noise environment during the complex geological mineral grade analysis process, an order self-learning ARHMM (Autoregressive Hidden Markov Model) algorithm is proposed to carry out online outlier detection in the geological mineral grade analysis process. The algorithm utilizes AR model to fit the time series obtained from “Online x - ray Fluorescent Mineral Analyzer” and makes use of HMM as a basic detection tool, which can avoid the deficiency of presetting the threshold in traditional detection methods. The structure of traditional BDT (Brockwell-Dahlhaus-Trindade) algorithm is improved to be a double iterative structure in which iterative calculation from both time and order is applied respectively to update parameters of ARHMM online. With the purpose of reducing the influence of outlier on parameter update of ARHMM, the strategies of detection-before-update and detection-based-update are adopted, which also improve the robustness of the algorithm. Subsequent simulation by model data and practical application verify the accuracy, robustness, and property of online detection of the algorithm. According to the result, it is obvious that new algorithm proposed in this paper is more suitable for outlier detection of mineral grade analysis data in geology and mineral processing.
Existe gran dificultad para la detección en tiempo real para series de datos masivos con altos niveles de ruido de valores atípicos. Se propone un algoritmo de autoaprendizaje ARHMM (Modelo autoregresivo oculto de Markov) para llevar a cabo la detección de dichos valores atípicos en el proceso de análisis del grado mineral geológico. El algoritmo usa un modelo AR para ajustar la serie de tiempo obtenida del “analizador de fluorescencia de rayos X” y hace uso del HMM como una herramienta básica de detección, la cual puede evitar la deficiencia de predeterminar el umbral en métodos tradicionales de detección. Para actualizar los parámetros del ARHMM en tiempo real, la estructura del algoritmo BDT (Brockwell-Dahlhaus-Trindade) tradicional se mejora para ser una doble estructura iterativa en la que se aplica el cálculo iterativo en tiempo y en orden respectivamente. Con el propósito de reducir la influencia de valores atípicos (o extremos) en la actualización del parámetro de ARHMM, se adoptan las estrategias de detección-antes-que-actualización y la detección-basada-en-actualización, lo que también aumenta la robustez del algoritmo. La subsiguiente simulación por modelos de datos y aplicación práctica comprueba la precisión, fortaleza y capacidad de la detección en línea del algoritmo. De acuerdo con el resultado, es evidente que el nuevo algoritmo propuesto en este artículo es más apropiado para la detección de datos de valores atipicos para el análisis del grado mineral en geología y el procesamiento mineral.
References
Abd-Krim, S. (2006). Vector Autoregressive Model-Order Selection From Finite Samples Using Kullback’s Symmetric Divergence. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(10), 2327.
Alexandridis, A., Sarimveis, H., & Bafas, G. (2003). A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks, 16(7), 1003-1017.
Almeida, J. A. S., & Barbosa L. M. S. (2007). A new method with outlier detection and automatic clustering. Chemometrics and Intelligent Laboratory Systems, 87(2), 208.
Barnet, V., & Lewis, T. (1994). Outlier in Statistical Data. John Wiley & Sons, Chichester.
Bilmes, A. J. (2006). What HMMs Can Do. IEICE - Transactions on Information and Systems, E89-d(3), 1.
Brockwell, P. J., Dahlhaus, R., & Trindade, A. A. (2002). Modified Burg Algorithms for Multivariate Subset Autoregression. Technical Report 2002-015, Department of Statistics, University of Florida.
Bullen, R. J., Cornford, D., & Nnbney, I. T. (2003). Outlier detection in scatterometer data: neural network approaches. Neural Networks, 16(3-4), 419.
Clarke, B. R., & Levis, T. (1998). An outlier problem in the determination of ore grade. Journal of applied statistics, 25(6), 751-662.
De'nan, F., Naaim, N., & Leong, L. C. (2017). Behaviour of flush end-plate connection for perforated section. Engineering Heritage Journal, 1, 11-20.
Edwin, M. K. & Raymond, T. N. (1998). Algorithms for Mining Distance-based Outliers. Proceedings of the twenty-fourth international conference on very large data bases, C. 392.
Han, J. W., & Micheline, K. (2001). Data mining concepts and techniques. Machinery Industry Press, China.
Hekimoglu, S., Eernoglu, R. C., & Kalina, J. (2009). Outlier detection by means of robust regression estimators for use in engineering science. Journal of Zhejiang university-science A, 10(6), 909.
Kameshwara, R., Rao, C. R., & Narayana, A. C. (2014). Assessing grade domain of iron ore deposit using geostatistical modelling: A case study. Journal of the Geological Society of India. 83(5), 549-554.
Knorr, E. M. & Ng, R. T. (1999). Finding Intentional Knowledge of Distance-based Outliers. Proceedings of the twenty-fifth international conference on very large data bases, C. 211.
Lou, H. L. (1995). Implementing the Viterbi Algorithm. IEEE Signal Processing Magazine, 1053-5888, 42.
Northey, S., Mohr, S., & Mudd, G. M. (2014). Modeling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources conservation and recycling, 83, 190-201.
Prakobphol, K., & Zhan J. T. (2008). A novel outlier detection scheme for network intrusion detection systems. Proceedings of the second international conference on information security and assurance, C. 555.
Rabiner, R. L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE. 77(2), 257.
Ramaswamy, S., Rastogi, R., & Kyuseok, S. (2000). Efficient algorithms for mining outliers from large data sets. Proceedings of the ACM SIGMOD International Conference on Management of Data Dallas, C. 427.
Rivoirard, J., Demange, C., & Freulon, X. (2013). A Top-Cut Model for Deposits with Heavy-Tailed grade distribution. Mathematical geosciences, 45(8), 967-982.
Takeuchi, J., & Yamanishi, K. (2006). A Unifying Framework for Detecting Outliers and Change Points from Time Series. IEEE Transactions on Knowledge and Data Engineering, 18(4), 482.
Trindade, A. A. (2003). Implementing Modified Burg Algorithms in Multivariate Subset Auto-regressions Modeling. Department of Statistics, University of Florida.
Wang, J. S. & Chiang, J. C. (2008). A cluster validity measure with Outlier detection for support vector clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 78.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Yu Wang. (2021). Online estimation of battery power state based on improved equivalent circuit model. IOP Conference Series: Earth and Environmental Science, 651(2), p.022080. https://doi.org/10.1088/1755-1315/651/2/022080.
2. Bhavya Mor, Sunita Garhwal, Ajay Kumar. (2021). A Systematic Review of Hidden Markov Models and Their Applications. Archives of Computational Methods in Engineering, 28(3), p.1429. https://doi.org/10.1007/s11831-020-09422-4.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.