Published
Seasonal Hydrological and Meteorological Time Series
Series de Tiempo hidrológicas y meteorológicas estacionales
DOI:
https://doi.org/10.15446/esrj.v22n2.65577Keywords:
Hydrology time series data, Meteorological time series, Conditional regression models, Bayesian analysis, MCMC methods (en)Series de tiempo hidrológicas, Series de tiempo meteorológicas, Modelos de regresión condicional, Análisis Bayesiano, Métodos MCMC. (es)
Downloads
Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time series
References
Cepeda-Cuervo, E. (2001). Variability Modeling in Generalized Linear Models. Unpublished Ph.D. Thesis. Mathematics Institute, Universidade Federal do Rio de Janeiro. http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM DA VARIABILIDADE.pdf
Cepeda C. E. & Gamerman D. (2005). Bayesian methodology for modeling parameters in the two parameter exponential family. Estadística, 57, 93-105.
Cepeda-Cuervo, E., Andrade, M. G., & Achcar, J. A. (2012). A seasonal and heteroscedastic gamma model for hydrological time series: A Bayesian approach. In: AIP Conference Proceedings, Vol. 1490, p. 97.
Chiang, S. M., Tsay, T. K. & Nix, S. J. (2002a). Hydrologic regionalization of watersheds. I: Methodology development. Journal of Water Resources Planning and Management, 128(1), 3-11.
Chiang, S. M., Tsay, T. K. & Nix, S. J. (2002b). Hydrologic regionalization of watersheds. II: Applications. Journal of Water Resources Planning and Management, 128(1), 12- 20.
Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modeling rates and proportions. Journal of Applied Statistics, 31, 799-815.
Guimaraes, R. & Santos, E. G. (2011). Principles of stochastic generation of hydrologic time series for reservoir planning and design: A case study. Journal of Hydrologic Engineering. In Press.
Hasebe, M., Dandou, T., Kumekawa, T. & Neijou, S. (2000). Time series analysis of monthly rainfall, mean air temperature and carbon dioxide. In: W. Z. Y. & S. X. Hu (eds.) Proceedings of the eighth International Symposium on Stochastic Hydraulics, 533-537. Beijing, China.
Hipel, K. W. & McLeod, A. E. (1994). Time series modeling of water resources and environmental systems. Elsevier, Amsterdam, The Netherlands.
Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20(12), 1898-1908.
Lee, J. Y. & Lee, K. K. (2000). Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Journal of Hydrology, 229, 190-201.
Marques, C. A. F., Ferreira, J. A., Rocha, A., Castanheira, J. M., Melo-Goncalves, P., Vaz, N. & Dias, J. M. (2006). Singular spectrum analysis and forecasting of hydrological time series. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1172-1179.
Modal, M. S., & Wasimi, S. A. (2006). Generating and forecasting monthly flows of the Ganges river with par model. Journal of Hydrology, 323(1-4), 41-66.
Montanari, A., Rosso, R. & Taqqu, M. S. (1997). Fractionally differenced arima models applied to hydrologic time series: Identification, estimation and simulation. Water Resources Research, 33(1-4), 1035-1044.
Salas, J. D., Delleur, J. W., Yevjervich, V. & Lane, W. L. (1980). Applied modeling of hydrologic time series. Water Resources Publications, Littlton, USA.
Salas, J. D., Boes, D. C. & Smith, R. A. (1982). Estimation of ARMA models with seasonal parameters. Water Resources Research, 18(4), 1006-1010.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64(4), 583-639.
Spiegelhalter, D. J., Thomas, A., Best N. G., & Gilks, W. R. (2003). Win-BUGS User Manual (version 1.4). MRC Biostatistics Unit, Cambridge, U.K.
Tesfaye, Y. G., Meerschaert, M. M. & Anderson, P. L. (2006). Identification of periodic autoregressive moving average models and their application to the modeling of river flows. Water Resources Research, 42(W01419), 1-11.
Wang, Q. J., Robertson, D. E. & Chiew, F. H. S. (2009). A Bayesian joint probability modeling approach for seasonal forecasting of stream-flows at multiple sites. Water Resources Research, 45(W05407), 1-18.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Xiaoting Li, Jingling Bao, Jianguang Sun, Ji Wang. (2021). Application of DPSIR model in prediction of ecological sustainable development capacity in Bohai Sea. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06866-1.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











