Published

2018-04-01

Seasonal Hydrological and Meteorological Time Series

Series de Tiempo hidrológicas y meteorológicas estacionales

DOI:

https://doi.org/10.15446/esrj.v22n2.65577

Keywords:

Hydrology time series data, Meteorological time series, Conditional regression models, Bayesian analysis, MCMC methods (en)
Series de tiempo hidrológicas, Series de tiempo meteorológicas, Modelos de regresión condicional, Análisis Bayesiano, Métodos MCMC. (es)

Downloads

Authors

  • Edilberto Cepeda Cuervo Universidad Nacional de Colombia Statistics Department
  • Jorge Alberto Achcar Social medicine department FMRP, Universidade de São Paulo RibeirãoPreto, S.P., Brazil
  • Marinho G. Andrade Applied mathematics and statistics department ICMC, Universidade de S˜aoPaulo

Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time series

Los modelos de series de tiempo se usan a menudo en estudios de hidrología y meteorología para modelar series de flujos a fin de hacer pronósticos y generar series sintéticas que son insumos para el análisis de sistemas complejos de recursos hídricos. En este artículo presentamos un nuevo enfoque de modelado para series de tiempo hidrológicas y meteorológicas asumiendo una distribución continua para los datos, donde se modelan los parámetros tanto de la media condicional como de la varianza condicional. Métodos bayesianos estándares que usan MCMC (Markov Chain Monte Carlo) son usados para simular muestras de la distribución  a posteriori conjunta de interés. Dos aplicaciones a conjuntos de datos reales ilustran la metodología propuesta,  asumiendo  que las observaciones provienen de una distribución normal,  gamma o beta. Un primer ejemplo está dado por una serie temporal de promedios mensuales de los caudales naturales, medidos en el período anual que va de 1931 a 2010 en la presa hidroeléctrica de Furnas, Brasil. Un segundo ejemplo considera una serie temporal de 313 datos de humedad del aire medidos en una estación meteorológica de Río Claro, una ciudad brasileña ubicada en el sureste de Brasil. Estas aplicaciones nos motivan a introducir nuevas clases de modelos para analizar series de tiempo hidrológicas y meteorológicas.

References

Cepeda-Cuervo, E. (2001). Variability Modeling in Generalized Linear Models. Unpublished Ph.D. Thesis. Mathematics Institute, Universidade Federal do Rio de Janeiro. http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM DA VARIABILIDADE.pdf

Cepeda C. E. & Gamerman D. (2005). Bayesian methodology for modeling parameters in the two parameter exponential family. Estadística, 57, 93-105.

Cepeda-Cuervo, E., Andrade, M. G., & Achcar, J. A. (2012). A seasonal and heteroscedastic gamma model for hydrological time series: A Bayesian approach. In: AIP Conference Proceedings, Vol. 1490, p. 97.

Chiang, S. M., Tsay, T. K. & Nix, S. J. (2002a). Hydrologic regionalization of watersheds. I: Methodology development. Journal of Water Resources Planning and Management, 128(1), 3-11.

Chiang, S. M., Tsay, T. K. & Nix, S. J. (2002b). Hydrologic regionalization of watersheds. II: Applications. Journal of Water Resources Planning and Management, 128(1), 12- 20.

Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modeling rates and proportions. Journal of Applied Statistics, 31, 799-815.

Guimaraes, R. & Santos, E. G. (2011). Principles of stochastic generation of hydrologic time series for reservoir planning and design: A case study. Journal of Hydrologic Engineering. In Press.

Hasebe, M., Dandou, T., Kumekawa, T. & Neijou, S. (2000). Time series analysis of monthly rainfall, mean air temperature and carbon dioxide. In: W. Z. Y. & S. X. Hu (eds.) Proceedings of the eighth International Symposium on Stochastic Hydraulics, 533-537. Beijing, China.

Hipel, K. W. & McLeod, A. E. (1994). Time series modeling of water resources and environmental systems. Elsevier, Amsterdam, The Netherlands.

Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20(12), 1898-1908.

Lee, J. Y. & Lee, K. K. (2000). Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Journal of Hydrology, 229, 190-201.

Marques, C. A. F., Ferreira, J. A., Rocha, A., Castanheira, J. M., Melo-Goncalves, P., Vaz, N. & Dias, J. M. (2006). Singular spectrum analysis and forecasting of hydrological time series. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1172-1179.

Modal, M. S., & Wasimi, S. A. (2006). Generating and forecasting monthly flows of the Ganges river with par model. Journal of Hydrology, 323(1-4), 41-66.

Montanari, A., Rosso, R. & Taqqu, M. S. (1997). Fractionally differenced arima models applied to hydrologic time series: Identification, estimation and simulation. Water Resources Research, 33(1-4), 1035-1044.

Salas, J. D., Delleur, J. W., Yevjervich, V. & Lane, W. L. (1980). Applied modeling of hydrologic time series. Water Resources Publications, Littlton, USA.

Salas, J. D., Boes, D. C. & Smith, R. A. (1982). Estimation of ARMA models with seasonal parameters. Water Resources Research, 18(4), 1006-1010.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64(4), 583-639.

Spiegelhalter, D. J., Thomas, A., Best N. G., & Gilks, W. R. (2003). Win-BUGS User Manual (version 1.4). MRC Biostatistics Unit, Cambridge, U.K.

Tesfaye, Y. G., Meerschaert, M. M. & Anderson, P. L. (2006). Identification of periodic autoregressive moving average models and their application to the modeling of river flows. Water Resources Research, 42(W01419), 1-11.

Wang, Q. J., Robertson, D. E. & Chiew, F. H. S. (2009). A Bayesian joint probability modeling approach for seasonal forecasting of stream-flows at multiple sites. Water Resources Research, 45(W05407), 1-18.

How to Cite

APA

Cepeda Cuervo, E., Achcar, J. A. & Andrade, M. G. (2018). Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, 22(2), 83–90. https://doi.org/10.15446/esrj.v22n2.65577

ACM

[1]
Cepeda Cuervo, E., Achcar, J.A. and Andrade, M.G. 2018. Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal. 22, 2 (Apr. 2018), 83–90. DOI:https://doi.org/10.15446/esrj.v22n2.65577.

ACS

(1)
Cepeda Cuervo, E.; Achcar, J. A.; Andrade, M. G. Seasonal Hydrological and Meteorological Time Series. Earth sci. res. j. 2018, 22, 83-90.

ABNT

CEPEDA CUERVO, E.; ACHCAR, J. A.; ANDRADE, M. G. Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, [S. l.], v. 22, n. 2, p. 83–90, 2018. DOI: 10.15446/esrj.v22n2.65577. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/65577. Acesso em: 27 dec. 2025.

Chicago

Cepeda Cuervo, Edilberto, Jorge Alberto Achcar, and Marinho G. Andrade. 2018. “Seasonal Hydrological and Meteorological Time Series”. Earth Sciences Research Journal 22 (2):83-90. https://doi.org/10.15446/esrj.v22n2.65577.

Harvard

Cepeda Cuervo, E., Achcar, J. A. and Andrade, M. G. (2018) “Seasonal Hydrological and Meteorological Time Series”, Earth Sciences Research Journal, 22(2), pp. 83–90. doi: 10.15446/esrj.v22n2.65577.

IEEE

[1]
E. Cepeda Cuervo, J. A. Achcar, and M. G. Andrade, “Seasonal Hydrological and Meteorological Time Series”, Earth sci. res. j., vol. 22, no. 2, pp. 83–90, Apr. 2018.

MLA

Cepeda Cuervo, E., J. A. Achcar, and M. G. Andrade. “Seasonal Hydrological and Meteorological Time Series”. Earth Sciences Research Journal, vol. 22, no. 2, Apr. 2018, pp. 83-90, doi:10.15446/esrj.v22n2.65577.

Turabian

Cepeda Cuervo, Edilberto, Jorge Alberto Achcar, and Marinho G. Andrade. “Seasonal Hydrological and Meteorological Time Series”. Earth Sciences Research Journal 22, no. 2 (April 1, 2018): 83–90. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/65577.

Vancouver

1.
Cepeda Cuervo E, Achcar JA, Andrade MG. Seasonal Hydrological and Meteorological Time Series. Earth sci. res. j. [Internet]. 2018 Apr. 1 [cited 2025 Dec. 27];22(2):83-90. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/65577

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Xiaoting Li, Jingling Bao, Jianguang Sun, Ji Wang. (2021). Application of DPSIR model in prediction of ecological sustainable development capacity in Bohai Sea. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06866-1.

Dimensions

PlumX

Article abstract page views

804

Downloads

Download data is not yet available.