Published

2018-04-01

Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil

Estudio de la relación entre el comportamiento hidromecánico y la microestructura de un suelo estructurado

DOI:

https://doi.org/10.15446/esrj.v22n2.65640

Keywords:

hydro-mechanical behavior, microstructural behavior, pore size distribution. (en)
Comportamiento hidromecánico, Comportamiento microestructural, Distribución del tamaño de los poros, (es)

Downloads

Authors

  • Manoel Porfirio Cordão Neto Department of Civil and Environmental Engineering, University of Brasilia
  • Oisy Hernández Department of Civil Engineering, Federal University of West Bahia
  • Raydel Lorenzo Reinaldo Department of Civil Engineering, Federal University of Tocantins https://orcid.org/0000-0003-2419-9758
  • Camila Borges Department of Civil Engineering, Federal Institute of Goias. Luciania (GO)
  • Bernardo Caicedo Geotechnical Post-Graduation Program, University of Andes

Structured soils, such as residual laterites or volcanic ashes, abound in tropical regions. The hydro-mechanical behavior of these soils is clearly related to their structure. New techniques based on microstructural studies constitute a powerful tool for investigating these soils. This work presents an experimental investigation that documents the relationships between the microstructure and the mechanical behavior of these soils. This study focuses on the microstructural behavior of Brasilia clay, a structured, highly porous tropical soil (n>50%) with a bimodal pore size distribution. The microstructure was investigated using pore size distribution analyses of different structural states and void ratios. The mercury intrusion porosimetry (MIP) technique was used to explore the pore size distribution of samples in various conditions, i.e., natural, compacted, slurry or consolidated states. Modeling of the pore size distribution curves was performed using the bimodal van Genuchten curve, which permits the linking of the pore size distribution curves (PSD) to the water retention curve. We observed that loading and compacting did not affect the micro-pores of this soil, and we conclude that the changes occurred entirely within the macro-pores.

Los suelos estructurados, tales como las lateritas residuales o las cenizas volcánicas, abundan en las regiones tropicales. El comportamiento hidromecánico de estos suelos está claramente relacionado con su estructura. Las nuevas técnicas basadas en estudios microestructurales constituyen una poderosa herramienta para investigar estos suelos. Este trabajo presenta una investigación experimental que documenta las relaciones entre la microestructura y el comportamiento mecánico de estos suelos. Este estudio se centra en el comportamiento microestructural de la arcilla de Brasília, un suelo tropical estructurado y altamente poroso (n> 50%) con una distribución de tamaño de poros (PSD) bimodal. Fueron utilizados los análisis de PSD para investigación de la microestrutura  del suelo en  diferentes estados  y  con diferentes índices de vacíos. Se utilizó la técnica de porosimetría por intrusión de mercurio (MIP) para explorar la PSD de muestras en diferentes condiciones, es decir, natural, compactado, lodo o estados consolidados. Se realizó la modelación de  las curvas PSD utilizando  la curva bimodal de Van Genuchten, que permite  el enlace de curvas PSD a la curva de retención de agua. Observamos que la aplicación de carga sobre las muestras de suelo y la compactación de las mimas no afectaron los microporos y se concluyó que los cambios que ocurrieron en este suelo fueron completamente dentro de los macroporos.

References

Almeida, M. S. S. & Futai, M. M. (2005). An experimental investigation of the mechanical behaviour of an unsaturated gneiss residual soil. Géotechnique, 55(3), 201-213.

Alonso, E. E., Josa, A. & Gens, A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405–430.

Alonso, E. E., Pereira, J., Vaunat, J. & Olivella, S. (2010). A microstructurally based effective stress for unsaturated soils. Géotechnique, 60(12), 913–925.

Alonso, E. E., Pinyol, N.M. & Gens, A. (2013). Compacted soil behaviour: initial state, structure and constitutive modeling. Géotechnique, 63(6), 463–478.

Alonso, E. E., Vaunat, J. & Gens, A. (1999). Modelling the mechanical behaviour of expansive clay. Engineering Geology, 54, 173–183.

Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329–378.

Camapum de Carvalho, J. & Mortari, D. (1994). Caracterização geotécnica de solos porosos do distrito federal. III Simpósio Brasileiro de Escavações Subterrâneas, Brasilia, 109–122.

Delage, P. & Lefebvre, G. (1984). Study of the structure of a sensitive champlain clay and its evolution during consolidation. Canadian Geotechnical Journal, 21, 21–35.

Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 30(114), 211–223.

Gens, A. & Alonso, E. E. (1992). A framework for the behaviour of unsaturated expansive soils. Canadian Geotechnical Journal, 29, 1013–1032.

Grau, E. D. A. (2014). Efeito da Variação de Umidade no Empuxo em Solos Tropicais. MSc. Thesis, G.DM-240/2014, Civil and Environmental Engineering Department, University of Brasilia, Brasilia, 105p.

van Genutchen, M. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated. Soil Science Society of America Journal, 44, 892–898.

Guimarães, R. C. (2002). Análise das Propiedades e Comportamento de un Perfil de Solo Laterítico Aplicada ao Estudo do Desempenho de Estacas Escavadas. MSc. Thesis, Civil and Environmental Engineering Department, University of Brasília, Brasilia 207p.

Koliji, A., Vulliet, L. & Laloui, L. (2008). Advanced constitutive model for unsaturated structured soil with double porosity. 2nd International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, 709– 715.

Lizcano, A., Herrera, M.C. & Santamarína, J.C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 6, 167–198.

Loret, B. & Khalili, N. (2000). A three phase model for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 24, 983–027.

Miguel, M. G. & Bonder, B. H. (2012). Soil–water characteristic curves obtained for a colluvial and lateritic soil profile considering the macro and micro porosity. Geotechnical and Geological Engineering, 30, 1405–1420.

Mitchell, J. K. & Soga, K. (2005). Fundamentals of Soil Behaviour. John Wiley & Sons, New Jersey, USA.

Otálvaro, I. F. (2013). Comportamiento Hidromecánico de un Suelo Tropical Compactado. DSc. Thesis, Civil and Environmental engineering department, University of Brasília, 148p.

Otalvaro, I. F., Cordão Neto, M. P., Delage, P., & Caicedo, B. (2016). Relationship between soil structure and water retention properties in a residual compacted soil. Engineering Geology, 205, 73-80.

Pinyol, N. M., Alonso, E. E. & Gens, A. (2012). Modelling Compacted Soil Behaviour Including Microstructural Features. Unsaturated Soils: Research and Applications, Springer, Berlin, Germany, 119-127.

Prapaharan, S., White, D.M. & Altsschaeffl, A.G. (1991). Fabric of field- and laboratory compacted clay. Journal of Geotechnical Engineering, 117(12), 1934–1940.

Romero, E. (2013). A microstructural insight into compacted clayey soils and their hydraulic properties. Engineering Geology, 165, 3–19.

Sanchez, M., Gens, A., Guimaraes, L. & Olivella, S. (2005). A double structure generalized plasticity model for expansive materials. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 751-787.

Sheng, D., Fredlund, D. G. & Gens, A. (2008). A new modelling approach for unsaturated soils using independent stress variables. Canadian Geotechnical Journal, 45(4), 511–534.

Silva, J. (2007). Estudos preliminares para implantação de trincheiras de infiltração. MSc. Thesis, Civil and Environmental engineering department, University of Brasília, 109p.

Silva, M. T. M. G. (2009). Metodologia para determinação de parâmetros para solos não saturados utilizando ensaios com umidade conhecida. MSc. Thesis, Civil and Environmental Engineering Department, University of Brasília, 113p.

Vaughan, P. R. & Leroueil, S. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488.

della Vecchia, G., Jommi, C. & Romero, E. (2013). A fully coupled elastic–plastic hydromechanical model for compacted soils accounting for clay activity. International Journal for Numerical and Analytical Methods in Geomechanics, 37(5), 503–535.

Wheeler, S. J., Sharma, R. S. & Buisson, M. S. (2003). Coupling of hydraulic hysteresis and stress- strain behaviour in unsaturated soils. Geotechnique, 53(1), 41–54.

Zhang, C. & Rothfuchs, T. (2004). Experimental study of the hydro-mechanical behaviour of the callovo-oxfordian argillite. Applied Clay Science, 26(October), 325–336.

How to Cite

APA

Cordão Neto, M. P., Hernández, O., Lorenzo Reinaldo, R., Borges, C. and Caicedo, B. (2018). Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil. Earth Sciences Research Journal, 22(2), 91–101. https://doi.org/10.15446/esrj.v22n2.65640

ACM

[1]
Cordão Neto, M.P., Hernández, O., Lorenzo Reinaldo, R., Borges, C. and Caicedo, B. 2018. Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil. Earth Sciences Research Journal. 22, 2 (Apr. 2018), 91–101. DOI:https://doi.org/10.15446/esrj.v22n2.65640.

ACS

(1)
Cordão Neto, M. P.; Hernández, O.; Lorenzo Reinaldo, R.; Borges, C.; Caicedo, B. Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil. Earth sci. res. j. 2018, 22, 91-101.

ABNT

CORDÃO NETO, M. P.; HERNÁNDEZ, O.; LORENZO REINALDO, R.; BORGES, C.; CAICEDO, B. Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil. Earth Sciences Research Journal, [S. l.], v. 22, n. 2, p. 91–101, 2018. DOI: 10.15446/esrj.v22n2.65640. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/65640. Acesso em: 17 aug. 2024.

Chicago

Cordão Neto, Manoel Porfirio, Oisy Hernández, Raydel Lorenzo Reinaldo, Camila Borges, and Bernardo Caicedo. 2018. “Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil”. Earth Sciences Research Journal 22 (2):91-101. https://doi.org/10.15446/esrj.v22n2.65640.

Harvard

Cordão Neto, M. P., Hernández, O., Lorenzo Reinaldo, R., Borges, C. and Caicedo, B. (2018) “Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil”, Earth Sciences Research Journal, 22(2), pp. 91–101. doi: 10.15446/esrj.v22n2.65640.

IEEE

[1]
M. P. Cordão Neto, O. Hernández, R. Lorenzo Reinaldo, C. Borges, and B. Caicedo, “Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil”, Earth sci. res. j., vol. 22, no. 2, pp. 91–101, Apr. 2018.

MLA

Cordão Neto, M. P., O. Hernández, R. Lorenzo Reinaldo, C. Borges, and B. Caicedo. “Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil”. Earth Sciences Research Journal, vol. 22, no. 2, Apr. 2018, pp. 91-101, doi:10.15446/esrj.v22n2.65640.

Turabian

Cordão Neto, Manoel Porfirio, Oisy Hernández, Raydel Lorenzo Reinaldo, Camila Borges, and Bernardo Caicedo. “Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil”. Earth Sciences Research Journal 22, no. 2 (April 1, 2018): 91–101. Accessed August 17, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/65640.

Vancouver

1.
Cordão Neto MP, Hernández O, Lorenzo Reinaldo R, Borges C, Caicedo B. Study of the relationship between hydro-mechanical soil behavior and microstructure of a structured soil. Earth sci. res. j. [Internet]. 2018 Apr. 1 [cited 2024 Aug. 17];22(2):91-101. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/65640

Download Citation

CrossRef Cited-by

CrossRef citations14

1. Cristhian Mendoza, Márcio Muniz de Farias. (2020). Critical state model for structured soil. Journal of Rock Mechanics and Geotechnical Engineering, 12(3), p.630. https://doi.org/10.1016/j.jrmge.2019.12.006.

2. Oisy Hernandez Menendez, Bruna de Carvalho Faria Lima Lopes, Bernardo Caicedo, Manoel Porfírio Cordão Neto. (2022). Microscopic and mineralogical characteristics behind the engineering properties of a compacted andesitic volcanic soil. Journal of South American Earth Sciences, 115, p.103752. https://doi.org/10.1016/j.jsames.2022.103752.

3. Vinícius de Oliveira Kühn, Bruna de Carvalho Faria Lima Lopes, Bernardo Caicedo, Manoel Porfírio Cordão-Neto. (2021). Micro-structural and volumetric behaviour of bimodal artificial soils with aggregates. Engineering Geology, 288, p.106139. https://doi.org/10.1016/j.enggeo.2021.106139.

4. Hanbing Liu, Xiang Lyu, Jing Wang, Xin He, Yunlong Zhang. (2020). The Dependence Between Shear Strength Parameters and Microstructure of Subgrade Soil in Seasonal Permafrost Area. Sustainability, 12(3), p.1264. https://doi.org/10.3390/su12031264.

5. Hanbing Liu, Shuang Sun, Lixia Wang, Yunlong Zhang, Jing Wang, Guobao Luo, Leilei Han. (2020). Microscopic Mechanism of the Macroscopic Mechanical Properties of Cement Modified Subgrade Silty Soil Subjected to Freeze-Thaw Cycles. Applied Sciences, 10(6), p.2182. https://doi.org/10.3390/app10062182.

6. Chuanyi Ma, Xuanzheng Li, Chuan Wang, Daojun Deng, Quanyi Xie, Gaohang Lv, Tao Wen. (2024). Study on the Deformation Law of the Embankment with Alluvial Fill in the Lower Yellow River. Advances in Civil Engineering, 2024(1) https://doi.org/10.1155/2024/9313507.

7. V. O. Kühn, B. C. F. L. Lopes, C. R. Borges, N. S. Massocco, M. P. Cordão-Neto. (2021). Relationship between pore-size distribution and compressibility of a lateritic soil. Géotechnique Letters, 11(4), p.326. https://doi.org/10.1680/jgele.21.00063.

8. Bruna de Carvalho Faria Lima Lopes, Vinícius de Oliveira Kühn, Ângela Custódia Guimarães Queiroz, Bernardo Caicedo, Manoel Porfírio Cordão Neto. (2022). Structure evaluation of a tropical residual soil under wide range of compaction conditions. Géotechnique Letters, 12(2), p.106. https://doi.org/10.1680/jgele.21.00101.

9. Rhoda Julia Ansaa-Asare, Andry Razakamanantsoa, Erwan Hamard, Myriam Duc, Bogdan Cazacliu, Loris Verron. (2024). Impact of earth variability and implementation processes on hydromechanical and microstructure properties of sustainable construction materials. Construction and Building Materials, 417, p.135303. https://doi.org/10.1016/j.conbuildmat.2024.135303.

10. Marco Rosone, Alessio Ferrari, R. Cardoso, C. Jommi, E. Romero. (2020). Water retention behaviour of compacted and reconstituted scaly clays. E3S Web of Conferences, 195, p.03026. https://doi.org/10.1051/e3sconf/202019503026.

11. Thiago Augusto Mendes, Sávio Aparecido dos Santos Pereira, Weber Anselmo dos Ramos Souza, Juan Félix Rodríguez Rebolledo, Gilson de Farias Neves Gitirana Junior, Maurício Martines Sales, Marta Pereira da Luz, Stephen Anderson. (2022). Physical and numerical modelling of infiltration and runoff in unsaturated exposed soil using a rainfall simulator. Soil Research, 61(3), p.267. https://doi.org/10.1071/SR22181.

12. Sérgio Leandro Scher Dias Neto, Roberto Lopes Ferraz, Taciano Oliveira da Silva, Eduardo Antonio Gomes Marques, Heraldo Nunes Pitanga, Eduardo Souza Cândido. (2024). Hydraulic Characteristics of Silt-Sized Iron Ore Tailings. Geotechnical and Geological Engineering, 42(5), p.3731. https://doi.org/10.1007/s10706-024-02755-y.

13. Lanqin Wang, Shuying Zang, Qiang Chen, Xiangwen Wu. (2021). Analysis of influence factors on aggregate stability and size distribution in mollisoils. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07431-6.

14. Mayssa Alves da Silva Sousa, Roberto Quental Coutinho, Laura Maria Goretti da Motta. (2023). Analysis of the unsaturated behaviour of compacted lateritic fine-grained tropical soils for use in transport infrastructure. Road Materials and Pavement Design, 24(1), p.31. https://doi.org/10.1080/14680629.2021.2009008.

Dimensions

PlumX

Article abstract page views

489

Downloads

Download data is not yet available.