Published

2017-10-01

Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau

Efecto de materiales nanocarbonados en la capacidad de retención de agua en suelos arenosos de la meseta de Loes

DOI:

https://doi.org/10.15446/esrj.v21n4.66104

Keywords:

Soil-nano carbon mixture layer, infiltration process, soil water characteristic curves, available water content (en)
mezcla de suelo nanocarbonado, proceso de infiltración, relación agua-suelo, contenido disponible de agua (es)

Downloads

Authors

  • Beibei Zhou State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China
  • Xiaopeng Chen

The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1%) and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC) were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs), residual water content (θr) and empirical parameter (α) increased with increasing nano carbon content, while the pore-size distribution parameter (n) decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.

La poca capacidad de retención de agua en suelos arenosos es un factor determinante en la erosión del terreno y en el entorno ecológico de la meseta de Loes, en China. Debido a su capacidad de absorción y a su amplia superficie específica, se investigó el uso de materiales nanocarbonados hechos de cáscara de coco de forma que con la estabilización del suelo se pueda mejorar la retención de agua. Se realizaron experimentos con muestras tomadas en el área de estudio en las cuales se mezcló una capa de materiales nanocarbonados a una profundidad de 20 cms. Los análisis se realizaron a partir de cuatro parámetros establecidos por el contenido en peso de los materiales nanocarbonados (0 %, 0.1 %, 0.5 % y 1 %) y de cinco parámetros basados en el espesor de la mezcla de nanocarbonados con el suelo, que van de uno a cinco centímetros. Las distribuciones de infiltración acumulada y contenido de agua frente a material sólido se determinaron al añadir agua a las muestras de suelo. A través del método de centrifugación se obtuvieron las relaciones agua-suelo (SWCC, del inglés Soil Water Characteristic Curves). Los principales resultados muestran que el índice de infiltración y la infiltración acumulada aumenta con proporción directa a los contenidos nanocarbonados, al igual que crece el espesor de la capa mezclada del suelo con materiales nanocarbonados. Los contenidos de agua y suelo en la capa de suelo nanocarbonada se redujeron pronunciadamente. Los modelos de Brooks-Carey y van Genuchten describen las relaciones de agua-suelo en suelos arenosos irregulares con varios contenidos de nanocarbón. Tanto el contenido de saturación de agua (θs), como el contenido de agua residual (θr) y el parámetro empírico (α) aumentaron proporcionalmente con el contenido de nanocarbón, mientras que el índice de distribución de los poros (n) bajó. Los contenidos disponibles de agua y suelo se incrementaron eficientemente con el aumento de los contenidos nanocarbonados. 

References

Abbasi, N., & Yasin, M. (2017). Petrography and Diagenetic History of Nagri Formation Sandstone in District Bagh And Muzaffarabad, Pakistan. Pakistan Journal of Geology, 1(2), 21–23.

Afzal, J., Ullah, N., Hussain, Z., Rukh, S., Ayaz, M., Akbar, A., & Zaman, A. (2017). Phytochemical analysis andantibacterial potential of leaf extract of bauhinia linn.: an ethnomedicinal plant. Matrix Science Pharma, 1(2), 17-19.

Ali, S.S., Ijaz, N., Aman, N., & Noor, M. (2017). Feasibility Study Of Low Density Waste Plastic In Non-Load Bearing Asphalt Pavement In District Faisalabad. Earth Sciences Pakistan, 1(2), 14-15.

Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media. Hydrology Papers, Colorado State University.

Burdine, N. T. (1953). Relative permeability calculation from pore size distribution data. Transactions of the American Institute of Mining and Metallurgical Engineers, 198, 71-78.

El-Jakee, J. K., Ali, S. S., El-Shafii, S. A., Hessain A. M., Al-Arfaj, A. A., & Mohamed, M. (2016). Comparative studies for serodiagnosis of haemorrhagic septicaemia in cattle sera. Saudi Journal of Biological Sciences, 23, 48-53. DOI: https://doi.org/10.1016/j.sjbs.2015.06.011

Fan, L., Wang, Y., Shao, X., Geng, Y., Wang, Z., Ma, Y., & Liu, J. (2012). Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline-alkali soil. Journal of Food, Agriculture & Environment, 10, 558-562.

Heathman, G. C., Starks, P. J., Ahuja, L. R., & Jackson, T. J. (2003). Assimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 207, 42–55.

Hillel (1982). Introduction to soil physics. New York, Academic Press.

Kammann, C., Linsel, S., Johannes, G. W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa: wild and on soil-plant relations. Plant and Soil, 9, 115-123.

Ismail, I., Husain, M. L., Zakaria, R. (2017A). Attenuation Of Waves From Boat Wakes In Mixed Mangrove Forest Of Rhizophora And Bruguiera Species In Matang, Perak. Malaysian Journal Geosciences, 1(2), 32-35.

Ismail, M.N., Rahman, R., & Tahir, S.H. (2017B). Wave-dominated shoreline deposits in the Late Miocene Sedimentary Sequence in the Miri Formation North Sarawak, Malaysia. Geological Behavior, 1(2), 14–19.

Khaydarov, R. A, Khaydarov, R. R, Gapurova, O., & Malish, R. (2012). Remediation of Metal Ion-Contaminated Groundwater and Soil Using Nanocarbon-Polymer Composition. In: Clean Soil and Safe Water. (Springer Netherlands), 167-182.

Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. Acs Nano 3, 3221-3227. DOI: 10.1021/nn900887m

King, P. M. (1981). Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurements. Australian Journal of Soil Research, 19, 275–285. DOI: 10.1071/SR9810275

Li, D., Peng, W., Ge, S., Li, S., Mo, B., & Ohkoshi, M. (2015). Groups characteristics of bioactivator extractives in three poplar woods. Wood Research, 60, 755-762.

Liu, H. B., & Liu, Z. L. (2010). Recycling Utilization Patterns of Coal Mining Waste in China. Resources, Reservation and recycling, 12, 1331-1340.

Liu, Y. Z, & Cheng, J. M. (2012). Adsorption Kinetics and Isotherms of Cu (II) and Cd (II) onto Oxidized Nano Carbon Black. Advanced Materials Research, 529, 579-584.

Lv, R. K. (1992). Nanjing Agricultural University, Soil Agrichemical Analysis. Beijing: Agriculture Press, 37-103. (In Chinese).

Maryam, A., Aslam, S., Saif, S., Aslam, T., Tusleem, K., Qamar, M.T.U., Abdullah, I., Mushtaq, A., Khalid, R.R., & Siddiqi, A.R. (2017). Statistical analysis of risk factors affecting the prognosis of biliary atresia in infants. Matrix Science Pharma, 1(2), 20-24.

Mi, C., Huang, Y., Liu, Z., Mi, W., Zhang, Z. (2014). A novel experimental teaching approach for electrical engineering based on semi-physical simulation. World Transactions on Engineering and Technology Education, 12, 779-783.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513-522.

Mualem, Y., & Dagan G. (1976). Methods of predicting the hydraulic conductivity of unsaturated soils. Technion Israel Institute of Technology.

Nayak, T. R., & Pastorin, G. (2013). Nano-Carbon-Based Systems for the Delivery of Bioactive Agents:. Pros and Cons. Nanopharmaceutics: The Potential Application of Nanomaterials, by Liang Xing Jie (Published by World Scientific Publishing Co. Pte. Ltd., 2013. ISBN# 9789814368674, 1, 535-569.

Nair, R., Varghese, S. H., Nair, B. G. Maekawa, T., Yoshida, Y. & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179, 154-163.

Nimmo, J. R., & Akstin, K. C. (1988). Hydraulic conductivity of a sandy soil at low water content after compaction by various methods. Soil Science Society of America Journal, 52, 303-310.

Shahzad, A., Munir, M.U.H., Yasin, M., Umar, M., Rameez, S., Samad, R., Altaf, S., & Sarfraz, Y. (2017). Biostratigraphy of Early Eocene Margala Hill Limestone in The Muzaffarabad Area (Kashmir Basin, Azad Jammu And Kashmir). Pakistan Journal of Geology, 1(2), 16–20.

She, D. L., Shao, M.A., Timm, L. C., Sentis, I. P., Reichardt, K., & Yu, S. E. (2010). Impacts of land-use pattern on soil water-content variability on the Loess Plateau of China. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 60, 369–380.

She, D. L, Tang, S. Q, Shao, M. A, Yu, S. E, & Xia, Y. Q. (2014). Characterizing scale specific depth persistence of soil water content along two landscape transects. Journal of Hydrology, 519, 1149-1161.

Tahir, S., Siong, K.V., Musta, B., & Asis, J. (2017). Facies and Sandstone Characteristics Of The Kudat Formation, Sabah, Malaysia. Geological Behavior, 1(2), 20–25.

Tan, S., Zhou, B., Wang, Q. J. (2014). Effect of nano-carbon on soil water infiltration. Acta Pedologica Sinica 51, 263-269. (In Chinese)

Tunggolou, J., & Payus, C. (2017). Moringa Oleifera As Coagulant Used in Water Purification Process F or Consumption. Malaysian Journal Geosciences, 1(2), 29-31.

Usman, M., Yasin, H., Nasir, D.A., & Mehmood, W. (2017). A Case Study Of Groundwater Contamination Due To Open Dumping Of Municipal Solid Waste In Faisalabad, Pakistan. Earth Sciences Pakistan, 1(2), 12-13.

Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.

Wang, H. W, Wang, Y. J, Chen J.H, Wang, S. Q., Cheng, J. M., Zhou, D. M. (2009). Application of modified nano-particle black carbon for the remediation of soil heavy metal pollution, 29, 431-436. (In Chinese)

Wu, M. Y. (2013). Effects of Incorporation of Nano-carbon into Slow-released Fertilizer on Rice Yield and Nitrogen Loss in Surface Water of Paddy Soil. Intelligent System Design and Engineering Applications (ISDEA), 2013 Third International Conference on. IEEE, 676-681.

Zhou, Z. C., Shangguan, Z. P., & Zhao, D. (2006). Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecological modelling 198, 263-268.

How to Cite

APA

Zhou, B. and Chen, X. (2017). Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau. Earth Sciences Research Journal, 21(4), 189–195. https://doi.org/10.15446/esrj.v21n4.66104

ACM

[1]
Zhou, B. and Chen, X. 2017. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau. Earth Sciences Research Journal. 21, 4 (Oct. 2017), 189–195. DOI:https://doi.org/10.15446/esrj.v21n4.66104.

ACS

(1)
Zhou, B.; Chen, X. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau. Earth sci. res. j. 2017, 21, 189-195.

ABNT

ZHOU, B.; CHEN, X. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau. Earth Sciences Research Journal, [S. l.], v. 21, n. 4, p. 189–195, 2017. DOI: 10.15446/esrj.v21n4.66104. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66104. Acesso em: 29 mar. 2024.

Chicago

Zhou, Beibei, and Xiaopeng Chen. 2017. “Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau”. Earth Sciences Research Journal 21 (4):189-95. https://doi.org/10.15446/esrj.v21n4.66104.

Harvard

Zhou, B. and Chen, X. (2017) “Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau”, Earth Sciences Research Journal, 21(4), pp. 189–195. doi: 10.15446/esrj.v21n4.66104.

IEEE

[1]
B. Zhou and X. Chen, “Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau”, Earth sci. res. j., vol. 21, no. 4, pp. 189–195, Oct. 2017.

MLA

Zhou, B., and X. Chen. “Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau”. Earth Sciences Research Journal, vol. 21, no. 4, Oct. 2017, pp. 189-95, doi:10.15446/esrj.v21n4.66104.

Turabian

Zhou, Beibei, and Xiaopeng Chen. “Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau”. Earth Sciences Research Journal 21, no. 4 (October 1, 2017): 189–195. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/66104.

Vancouver

1.
Zhou B, Chen X. Effect of Nano-Carbon on Water Holding Capacity in a Sandy Soil of the Loess Plateau. Earth sci. res. j. [Internet]. 2017 Oct. 1 [cited 2024 Mar. 29];21(4):189-95. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66104

Download Citation

CrossRef Cited-by

CrossRef citations10

1. Ayush Jha, Diksha Pathania, Sonu, Bhavna Damathia, Pankaj Raizada, Sarvesh Rustagi, Pardeep Singh, Gokana Mohana Rani, Vishal Chaudhary. (2023). Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. Environmental Research, 235, p.116456. https://doi.org/10.1016/j.envres.2023.116456.

2. Najibullah Zulfeqar, Ali Khosravi, Shiqiang Zou. (2024). Soil Conditioning Using Nanoparticles and Stability Enhancement: A Review of the Impacts on Hydro-Physico-Mechanical Characteristics. Geo-Congress 2024. , p.404. https://doi.org/10.1061/9780784485309.042.

3. Ali Asger Bhojiya. (2023). The potential contribution of nanocarbon to fostering sustainable agriculture for future generations. Nano Carbons, 1(1), p.228. https://doi.org/10.59400/n-c.v1i1.228.

4. Pragati Pramanik, Prasenjit Ray, Aniruddha Maity, Shrila Das, Srinivasan Ramakrishnan, Pooja Dixit. (2020). Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. , p.403. https://doi.org/10.1007/978-981-13-9628-1_24.

5. Ayesha Tahir, Jun Kang, Jaffer Ali, Ameer Bibi, Shabbar Abbas. (2022). Bioresource Technology. , p.466. https://doi.org/10.1002/9781119789444.ch16.

6. Mitchell P. Jones, Theresa Krexner, Alexander Bismarck. (2022). Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management, 267, p.115882. https://doi.org/10.1016/j.enconman.2022.115882.

7. Rabia Nazir, Yaseen Ayub, Lubna Tahir. (2020). Biogenic Nano-Particles and their Use in Agro-ecosystems. , p.317. https://doi.org/10.1007/978-981-15-2985-6_18.

8. Trisha Sinha, Bhaskar Pratap Singh, Kousik Nandi, Kshouni Das. (2023). Modern Nanotechnology. , p.77. https://doi.org/10.1007/978-3-031-31111-6_4.

9. Subhash Babu, Raghavendra Singh, Devideen Yadav, Sanjay Singh Rathore, Rishi Raj, Ravikant Avasthe, S.K. Yadav, Anup Das, Vivek Yadav, Brijesh Yadav, Kapila Shekhawat, P.K. Upadhyay, Dinesh Kumar Yadav, Vinod K. Singh. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, p.133451. https://doi.org/10.1016/j.chemosphere.2021.133451.

10. Daraei ELAHE, Bayat HOSSEIN, Zamani POUYA. (2023). Effect of oxide nanoparticles on soil water retention curve and soil tensile strength. Pedosphere, https://doi.org/10.1016/j.pedsph.2023.07.017.

Dimensions

PlumX

Article abstract page views

431

Downloads

Download data is not yet available.