Published

2018-01-01

Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content

Propiedades macro y micromecánicas de suelos de arena guijosa con diferente clasificación granulométrica

DOI:

https://doi.org/10.15446/esrj.v22n1.66105

Keywords:

Sandy pebble soil, coarse-grained content, discrete element, macro-micromechanical properties, (en)
Suelo arenoso y guijarroso, contenido de grano grueso, elementos discretos, propiedades macro y micromecánicas (es)

Downloads

Authors

  • Junfu Lu
  • Di Li
  • Xiaoqiang Xue
  • Shenlin Ling

Sandy pebble stratum is a typical discrete particle unstable stratum, mainly consisting of sand and pebble. However, the effect of coarse-grained content on the stability of stratum is not clear. This paper defined the sandy pebble soil of different coarse-grained content in Chengdu City, Sichuan Province, China as the research object. Research on macro-mesomechanical properties of sandy pebble soil of different coarse-grained content was carried out using the method combining the indoor large-scale triaxial test of coarse-grained soil with the discrete element numerical triaxial test. The research results showed that the stress-strain curve of sandy pebble soil exhibited strain softening with the increase of coarse-grained content; when the confining pressure was the same, the stress peak increased and the strain when the peak was reached decreased gradually with the increase of coarse-grained content. It revealed the functional relationship between coarse-grained content and mechanical indexes of sandy pebble soil such as internal friction angle and cohesion. The internal friction angle and cohesion of sandy pebble soil linearly increased with the rise of coarse-grained material; it proposed the particle discrete element micro parameters of sandy pebble soil of different coarse-grained content, including contact modulus, friction coefficient, particle stiffness ratio, contact bond strength. The research results provided the theoretical support for the new design and construction of sandy pebble stratum project. 

La capa de arena guijosa es un manto típico de partículas inestables que consisten principalmente de arena y guijarros. Sin embargo, el efecto del contenido de grano grueso en la estabilidad de la capa no es claro. El área de investigación en este estudio es la ciudad de Chengdu, provincia de Sichuan, en China. Allí se tomaron muestras de diferente clasificación granulométrica para analizar las propiedades macro y mesomecánicas del suelo de arena guijosa a través del método combinado de la prueba triaxial a gran escala en laboratorio para suelos de grano grueso con la prueba triaxial numérica de elementos discretos. Los resultados de la investigación muestran que la curva del ensayo de tracción en suelos de arena guijosa presenta un aplacamiento en la presión con el incremento del contenido de grano grueso. Cuando la presión de confinamiento fue la misma, el pico de esfuerzo se incrementó y la presión empezó a caer gradualmente cuando se alcanzó el pico con el incremento del contenido de grano grueso. Esto revela la relación funcional entre el contenido de grano grueso y los indicadores mecánicos para suelos de arena guijosa como el ángulo de fricción interna y la cohesión; estos factores se incrementaron con el aumento del material de grano grueso. Esto sugiere los microparámetros de particulas de elementos discretos en este tipo de suelos, que incluyen el modulo de contacto, el coeficiente de fricción, la proporción de rigidez de partículas y la fuerza del vínculo de contacto. Los resultados de la investigación proporcionan el apoyo teórico para el diseño y construcción de nuevos proyectos sobre la capa arenosa y guijarrosa.

References

Ahmad, N., Hussain, T., Awan, A.N., Sattar, A., Arslan, C., Tusief, M.Q., Mariam, Z. (2017). Efficient and Eco-friendly Management of biodegradable Municipal Solid Waste (MSW) using naturally aerated Windrow CompostingTechnique in District Lahore Pakistan. Earth Science Pakistan,1(1), 01-04.

Andik, B., Sarang, A. (2017). Daylighting Buried Rivers And Streams In Tehran. Water Conservation And Management, 1(2), 01-04. Basarian, M.S., Tahir, S.H. (2017). Groundwater Prospecting Using Geoelectrical MethodAt Kg Gana, Kota Marudu, Sabah. Earth

Science Malaysia, 1(2), 07-09.

Bilal, A., Yasin, M., Ali, A. (2017). The Geology And Structure Of Neogene Rocks In Dadyal and Adjacent Areas, In The Sub-Himalayas, Azad Jammu And Kashmir, Pakistan. Earth Science Malaysia,1(1), 15-20.

Cundall, P. A., &Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.

Geng, L., Huang, Z., & Miao, Y. (2011). Meso-mechanics Simulation Triaxial Test of Coarse-grained Soil. Journal of Civil Engineering

and Management,28(4): 24-29.

Guo, Q. (1998). The engineering properties and application of coarse-grained soil. Zhengzhou: Yellow River Water Conservancy Press.

Hejazi, S.M., Lotfi, F., Fashandi, H., Alirezazadeh, A. (2017). Serishm: An Eco-Friendly and Biodegradable Flame Retardant for Fabrics. Environment & Ecosystem Science,1(2), 05-08.

Hoek, E.,& Brown, E. T. (1998). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165-1186.

Kudus, K., Grasian, I., Madasamy, S., John, A. (2017). Immunomodulatory Effect of Alginic Acid from Brown Seaweed SargassumWightiion Disease Resistance in Penaeus Monodon. Journal CleanWAS,1(1), 26-29.

Nema, A., Yadav, K.D., Christian, R.A. (2017). Effect of Retention Time On Primary Media For Greywater Treatment. Water Conservation and Management, 1(1), 01-03.

OmaraShahestan, M.J., OmaraShastani, S. (2017). Evaluating Environmental Considerations with Checklist And Delphi Methods, Case Study: Suran City, Iran. Environment & Ecosystem Science,1(2), 01-04.

Qi, Y., Tang, X., & Li, X. (2015). Stress-induced anisotropy of coarse-grained soil by true triaxial tests based on PFC. Chinese Journal of Geotechnical Engineering, 37(12), 2292-2300.

Rahman, N.A.,Tarmudi, Z., Rossdy, M., Muhiddin, F.A. (2017). Flood Mitigation Measures Using Intuitionistic Fuzzy Dematel Method. Malaysian Journal Geosciences, 1(2), 01-05.

Ridzuan, A.A., Zahar, U.A.U., Noor, N.A.M. (2017). Association of Evacuation Dimensions towards Risk Perception of the Malaysian students who studied at Jakarta, Medan, and Acheh in Indonesia. Malaysian Journal Geosciences, 1(1), 07-12.

Si, H. (1990). On the Mechanical Properties of Cohesionless Sand Cobbles and Rockfill Materials. Chinese Journal of Geotechnical Engineering, 12(6), 32-41.

Wei, H., Wang, R., & Hu, M. (2008).Strength behavior of gravelly soil with different coarse-grained contents in Jiangjiagou ravine. Rock and Soil Mechanics, 29(1), 48-51.

Wun, W.L., Chua, G.K., Chin, S.Y. (2017). Effect of Palm Oil Mill Effluent (Pome) Treatment ByActivated Sludge. Journal CleanWAS,1(2), 06-09.

Xu, X., Wei, H., & Meng, Q. (2013). Dem Simulation on Effect of Coarse Gravel Content to Direct Shear Strength and Deformation Characteristics of Coarse-grained Soil. Journal of Engineering Geology, 21(2), 311-316.

Yasin, H., Usman, M., Rashid, H., Nasir, D.R., Randhawa, D.I.A. (2017). Alternative Approaches for Solid Waste Management: A Case Study in Faisalabad Pakistan. Earth Sciences Pakistan,1 (2), 07-09.

Yasin, M. (2017). Diagenesis of Miocene Sandstone in the District Sudunhoti and Poonch, Azad Jammu and Kashmir, Pakistan. Pakistan Journal of Geology, 1(1), 05-07.

Yasin, M., Shahzad, A., Abbasi, N., Ijaz, U., Khattak, Z. (2017). The Use of Stratigraphic Section In Recording Quagmire OfInformation For The Fluvial Depositional Environment – A Worked Example In District Poonch, Azad Jammu And Kashmir, Pakistan. Pakistan Journal of Geology, 1(2), 01-02.

Zhang, C., Zhan, X., & Yang, C. (2013). Mesoscopic simulation of strength and deformation characteristics of coarse grained materials. Rock and Soil Mechanics, 34(7), 2077-2083.

How to Cite

APA

Lu, J., Li, D., Xue, X. and Ling, S. (2018). Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content. Earth Sciences Research Journal, 22(1), 65–71. https://doi.org/10.15446/esrj.v22n1.66105

ACM

[1]
Lu, J., Li, D., Xue, X. and Ling, S. 2018. Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content. Earth Sciences Research Journal. 22, 1 (Jan. 2018), 65–71. DOI:https://doi.org/10.15446/esrj.v22n1.66105.

ACS

(1)
Lu, J.; Li, D.; Xue, X.; Ling, S. Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content. Earth sci. res. j. 2018, 22, 65-71.

ABNT

LU, J.; LI, D.; XUE, X.; LING, S. Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content. Earth Sciences Research Journal, [S. l.], v. 22, n. 1, p. 65–71, 2018. DOI: 10.15446/esrj.v22n1.66105. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66105. Acesso em: 19 apr. 2024.

Chicago

Lu, Junfu, Di Li, Xiaoqiang Xue, and Shenlin Ling. 2018. “Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content”. Earth Sciences Research Journal 22 (1):65-71. https://doi.org/10.15446/esrj.v22n1.66105.

Harvard

Lu, J., Li, D., Xue, X. and Ling, S. (2018) “Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content”, Earth Sciences Research Journal, 22(1), pp. 65–71. doi: 10.15446/esrj.v22n1.66105.

IEEE

[1]
J. Lu, D. Li, X. Xue, and S. Ling, “Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content”, Earth sci. res. j., vol. 22, no. 1, pp. 65–71, Jan. 2018.

MLA

Lu, J., D. Li, X. Xue, and S. Ling. “Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content”. Earth Sciences Research Journal, vol. 22, no. 1, Jan. 2018, pp. 65-71, doi:10.15446/esrj.v22n1.66105.

Turabian

Lu, Junfu, Di Li, Xiaoqiang Xue, and Shenlin Ling. “Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content”. Earth Sciences Research Journal 22, no. 1 (January 1, 2018): 65–71. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/66105.

Vancouver

1.
Lu J, Li D, Xue X, Ling S. Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content. Earth sci. res. j. [Internet]. 2018 Jan. 1 [cited 2024 Apr. 19];22(1):65-71. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66105

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Pengfei Li, Xiaopu Cui, Yingjie Wei, Junwei Xia, Xinyu Wang. (2023). Calibration method of mesoscopic parameter in sandy cobble soil triaxial test based on PFC3D. Frontiers of Structural and Civil Engineering, 17(12), p.1924. https://doi.org/10.1007/s11709-023-0028-4.

2. Yanping Ding, Linsheng Xu. (2021). Hydraulic pressure-resistant design of highway water-rich tunnels traversing exposed karst cave in karst area of peak cluster landform. Arabian Journal of Geosciences, 14(19) https://doi.org/10.1007/s12517-021-08045-8.

3. Shaokun Ma, Haijun Huang, Fapai Tian, Jian Gong, Jiabing Zhang, Zhibo Duan. (2024). Discrete Element Simulation of Macro and Micro Mechanical Properties of Round Gravel Material under Triaxial Stress. KSCE Journal of Civil Engineering, 28(5), p.1675. https://doi.org/10.1007/s12205-024-0279-1.

4. Ya Zhao. (2021). Transient stability analysis method and sensitivity study of unsaturated soil slopes under consideration of rainfall conditions. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07514-4.

5. Dongping Zhao, Luwei Wang, Baihao Zhang, Sixun Wen, Dong Li, De-yong Wang, Huachang Fang. (2022). Study on launch tunnelling parameters of a shield tunnel buried in pebble soil with existing pipelines base on discrete continuous coupling numerical method. Tunnelling and Underground Space Technology, 129, p.104629. https://doi.org/10.1016/j.tust.2022.104629.

Dimensions

PlumX

Article abstract page views

461

Downloads

Download data is not yet available.