Published

2017-10-01

Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China

Influencia de la presión y el contenido de agua sobre el índice de colapsabilidad de loess, en el distrito especial Xixian, provincia de Shaonxi, China

DOI:

https://doi.org/10.15446/esrj.v21n4.66106

Keywords:

Xixian New Area, loess collapsibility, wetting, pressure, initial collapse water content (en)
Distrito especial de Xixian (China), colapsabilidad de loess, humectación, presión, contenido de agua incial de colapso. (es)

Downloads

Authors

  • Jiading Wang State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
  • Yan Ma State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
  • Qianyi Guo State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
  • Di Chu State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
More than 40% area of the Xixian New Area is a loess deposit region, and most of the loess landform is tableland and terrace where the thickness of loess is very large. Therefore, loess collapsibility will be the most important geotechnical problem in future foundation investigation and construction. To explore loess collapsibility in the Xixian New Area, we conducted the K0 compression test, based on the collapsibility mechanism, which has different combinations of pressure (0~1.2 MPa) and water content (4%~Sat). Based on the σ-ε curve under different water content, we calculated the generalised collapse settlement and collapsibility coefficient of every water content under every pressure by subtracting the relevant curve from the saturated curve, and analysed the cross action of pressure and water on loess compressibility. The results show that the average collapsibility level of the northern Xixian New Area is self-weight collapsible level Ⅱ, with a lower limit of 14 m. Compressibility of loess is proportional to pressure and water content. Under low water content, the collapsibility coefficient δs increased while the pressure increased, but under medium and high water content, δs will reach peak with increasing pressure and after that, δs will decrease until its value is close to constant. When under the same pressure, δs decreases when water content increases. If set the additional strain 1.5% as collapse start criterion, then the initial collapse pressure Pi will linear proportional to water content. The initial collapse water content wi will increase sharply when pressure increases under low pressure, but wi will reach a constant value of 26% when pressure is larger than 200 kPa. This consequence will be meaningful for future geotechnical investigation and design in the Xixian New Area.

Para estimar la colapsabilidad en Xixian se realizó el test de compresión (K0), de acuerdo con el mecanismo de colapsabilidad, con diferentes combinaciones de presión (0~1.2 MPa) y contenido de agua (4%~Sat). Basado en la curva σ-ε con diferentes contenidos de agua se calcularon los coeficientes de asentamiento y colapsabilidad a partir de substracción de la curva en condiciones de saturación y analizando los efectos de presión y contenido de agua. Los resultados muestran que el promedio de colapsabilidad por su propio peso para el área de Xixian es de nivel II, con un límite bajo de hasta 14 m. La compresibilidad de loess es proporcional a la presión y al contenido de agua. Con un bajo contenido de agua, el coeficiente de colapsabilidad (δs) se incrementó mientras la presión se aumentó; pero, con contenidos medios y altos de agua, el coeficiente de colapsabilidad alcanzó su pico con el incremento de la presión, y luego bajó para prácticamente estabilizarse. Bajo presión constante, la colapsabilidad descendió al aumentar el contenido de agua. Si se asume como criterio inicial de colapso (Pi) una deformación adicional de 1.5%, Pi es linealmente proporcional al contenido de agua. El contenido de agua inicial de colapso (wi) se incrementa drásticamente cuando la presión se eleva a baja presión, sin embargo, el contenido de agua alcanza un valor constante de 26 % cuando la presión es de más de 200 kPa. Estos resultados son significativos para la investigación geotécnica y el diseño estructural en Xixian. 

References

Abbasi, N., Khan, M.S., Mughal, M.S., & Yasin, M. (2017). Sedimentary Facies Analysis of Nagri Formation, Kashmir Basin, Sub-Himalayas, Pakistan. Pakistan Journal of Geology, 1(2), 03–06.

Bakar, B., Tahir, S.H., & Asis, J. (2017). Deep Marine Benthic Foraminiferal from Temburong Formation in Labuan Island. Earth Science Malaysia, 1(2), 17-22

Bata, T., Samaila, N.K., Maigari, A.S., & Ikyoive, M.B.S.Y. (2017). Common Occurrences Of Authentic Pyrite crystals in Cretaceous Oil Sands as Consequence of Biodegradation Processes. Geological Behavior, 1(2), 26–30.

Derbyshire, E., Meng, X., & Wang, J. (1995), Collapsible Loess on the Loess Plateau of China. In: Genesis and Properties of Collapsible Soils. Volume 468 of the series NATO ASI Series, pp 267-293

Francisca, F. M. (2007). Evaluating the constrained modulus and collapsibility of loess from standard penetration test. International Journal of Geomechanics, 7(4), 307-310.

Gao, G. (1980). Microstructure classification and collapsibility of Loess. Chinese science, 12, 1203-1208, 1237-1240. (In Chinese)

Gao, W., Kanna, M.R.R., Suresh, E., & Farahani, M.R. (2017). Calculating of degree-based topological indices of nanostructures. Geology, Ecology, and Landscapes, 1(3), 173-183.

Highway Research Institute of Ministry of communications (1999). GB/T 50123 - 1999 geotechnical test method standard. Beijing: China Architecture and Building Press. (in Chinese)

Hussin, H., Fauzi, N., Jamaluddin, T.A., & Arifin, M.H. (2017). Rock Mass Quality Effected by Lineament Using Rock Mass Rating (Rmr) – Case Study from Former Quarry Site. Earth Science Malaysia, 1(2), 13-16.

Ismail, I., Husain, M.L., & Zakaria, R. (2017). Attenuation of Waves from Boat Wakes in Mixed Mangrove Forest Of Rhizophora And Bruguiera Species In Matang, Perak. Malaysian Journal Geosciences, 1(2), 32-35.

Kozubal, J., & Steshenko, D. (2015). The complex compaction method of an unstable loess substrate. Arabian Journal of Geosciences, 8(8), 6189–6198

Lei, X. (1987). The pore type Chinese loess and collapsible. China Science (series B chemical biology medical science, Agronomy ), 12: 1309-1318. (In Chinese)

Liu, Z. (1997). Loess Mechanics and engineering. Shaanxi Science and Technology Press. (In Chinese)

Ma, Y., & Wang, J. (2014). Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure. Chinese Journal of Geotechnical Engineering, 36(3), 537-546

Mustafaev, A. A. (1987). Problems of the mechanics of collapsible soils and methods of solving them. Soil Mechanics and Foundation Engineering, 24(6), 213–218

People's Republic of China national standard for building construction in collapsible loess area GB 50025-2004. (2004). Beijing: China Architecture and Building Press. (in Chinese)

Rabinovich, I. G., & Urinov, M. I. (1974). Characteristics of the development of collapse in loess soils with time. Soil Mechanics and Foundation Engineering, 11(5), 331–333

Sarkar, M.I., Islam, M.N., Jahan, A., Islam, A., & Biswas, J.C. (2017). Rice straw as a source of potassium for wetland rice cultivation. Geology, Ecology, and Landscapes, 1(3), 184-189.

Sun, J., & Liu, J. (2000). Unsaturated collapsibility, residual collapsibility and multiple collapsibility of Loess. Journal of geotechnical engineering, 3, 365-367. (in Chinese)

Tariq, W., Hussain, S.Q., Nasir, A., Tayyab, N., Gillani, S.H., & Rafiq, A. (2017). Experimental Study on Strength And Durability Of Cement And Concrete By Partial Replacement Of Fine Aggregate With Fly Ash. Earth Sciences Pakistan, 1(2), 07-11.

Tunggolou, J., & Payus, C. (2017). Moringa Oleifera As Coagulant Used in Water Purification Process F or Consumption. Malaysian Journal Geosciences, 1(2), 29-31.

Usman, M., Yasin, H., Nasir, A., & Mehmood, W. (2017). A Case Study of Groundwater Contamination Due to Open Dumping of Municipal Solid Waste in Faisalabad, Pakistan. Earth Sciences Pakistan, 1(2), 12-13.

Wang, J. & Gu, T. (2013). A mechanism for self-load collapsibility-saturated loess liquefaction caused by earth micro-tremors. Applied Mechanics and Materials, 405-408,541-547

Yang, Y. (1988). Research of loess collapse mechanism. Chinese Science (B series chemical biology agronomy Medicine Science), 7, 756-766. (In Chinese)

Yasin, M., Khan, M.S., & Khan, M.R. (2017). The Modal Analysis of Rocks in The Dwelling of Poonch And Sudhunhoti, Azad Jammu And Kashmir, Pakistan. Pakistan Journal of Geology, 1(2), 07–15.

Yew, L.K., & Rahim, I.A. (2017). Prediction of Rock Mass Properties, Tunnel Stability and Support Pressure by Geological Strength Index (GSI) In Crocker Formation: A Case Study. Geological Behavior, 1(2), 31-33.

Zhang, L. (2000). Discussion on the laboratory testing method to determine the collapsibility of loess. Site Investigation Science & Technology.

Zhang, S. (2000). Terminology and basic concepts of collapsible loess. Geotechnical Engineering Technology, 1, 42-46. (In Chinese)

Zhang, S., & Zhang, W. (1992). The collapsibility of loess in the process of reducing humidity and moistening. Journal of geotechnical engineering, 1, 57-61. (In Chinese)

Zhang, S., & Zheng, J. (1990). Wetting deformation characteristics of collapsible loess (Q3). Chinese Journal of geotechnical engineering, 4, 21-31. (In Chinese)

Zhang, W., & Zhang, S. (1995). Development of research on engineering properties of loess in China. Chinese Journal of geotechnical engineering, 6, 80-88. (In Chinese)

Zhang, Z. (1980). Loess in China. GeoJournal, 4(6), 525–540

Zhenghan, C., & Zudian, L.(1986). Mechanism of collapsible deformation of Loess. Chinese Journal of geotechnical engineering, 2, 1-12. (In Chinese)

How to Cite

APA

Wang, J., Ma, Y., Guo, Q. and Chu, D. (2017). Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China. Earth Sciences Research Journal, 21(4), 197–202. https://doi.org/10.15446/esrj.v21n4.66106

ACM

[1]
Wang, J., Ma, Y., Guo, Q. and Chu, D. 2017. Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China. Earth Sciences Research Journal. 21, 4 (Oct. 2017), 197–202. DOI:https://doi.org/10.15446/esrj.v21n4.66106.

ACS

(1)
Wang, J.; Ma, Y.; Guo, Q.; Chu, D. Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China. Earth sci. res. j. 2017, 21, 197-202.

ABNT

WANG, J.; MA, Y.; GUO, Q.; CHU, D. Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China. Earth Sciences Research Journal, [S. l.], v. 21, n. 4, p. 197–202, 2017. DOI: 10.15446/esrj.v21n4.66106. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66106. Acesso em: 17 jul. 2024.

Chicago

Wang, Jiading, Yan Ma, Qianyi Guo, and Di Chu. 2017. “Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China”. Earth Sciences Research Journal 21 (4):197-202. https://doi.org/10.15446/esrj.v21n4.66106.

Harvard

Wang, J., Ma, Y., Guo, Q. and Chu, D. (2017) “Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China”, Earth Sciences Research Journal, 21(4), pp. 197–202. doi: 10.15446/esrj.v21n4.66106.

IEEE

[1]
J. Wang, Y. Ma, Q. Guo, and D. Chu, “Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China”, Earth sci. res. j., vol. 21, no. 4, pp. 197–202, Oct. 2017.

MLA

Wang, J., Y. Ma, Q. Guo, and D. Chu. “Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China”. Earth Sciences Research Journal, vol. 21, no. 4, Oct. 2017, pp. 197-02, doi:10.15446/esrj.v21n4.66106.

Turabian

Wang, Jiading, Yan Ma, Qianyi Guo, and Di Chu. “Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China”. Earth Sciences Research Journal 21, no. 4 (October 1, 2017): 197–202. Accessed July 17, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/66106.

Vancouver

1.
Wang J, Ma Y, Guo Q, Chu D. Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China. Earth sci. res. j. [Internet]. 2017 Oct. 1 [cited 2024 Jul. 17];21(4):197-202. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66106

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Panpan Xu, Qiying Zhang, Hui Qian, Wengang Qu, Mengna Li. (2021). Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage. Engineering Geology, 282, p.105875. https://doi.org/10.1016/j.enggeo.2020.105875.

2. Qingyu Xie, Qiangbing Huang, Yue liu, Zhuangzhuang Wang, Daijin Yu, Jianbing Peng. (2023). Strength behaviors of undisturbed Malan loess under rainfall leaching in Yan’an area, China. Bulletin of Engineering Geology and the Environment, 82(2) https://doi.org/10.1007/s10064-022-03056-5.

3. Panpan Xu, Qiying Zhang, Hui Qian, Meng Guo, Faxuan Yang. (2021). Exploring the geochemical mechanism for the saturated permeability change of remolded loess. Engineering Geology, 284, p.105927. https://doi.org/10.1016/j.enggeo.2020.105927.

4. Longfei Zhang, Zaiqiang Hu, Hongru Li, Haicheng She, Xiaoliang Wang. (2023). Impact of water delivery pipeline leakage on collapsible loess foundations and treatment methods. Case Studies in Construction Materials, 19, p.e02341. https://doi.org/10.1016/j.cscm.2023.e02341.

5. Jie Cao, Bo Pang, Youfeng Li, Haiyuan Zhao, Xilin Lü. (2023). Experimental Study and Numerical Simulation of the Wetting Settlement of Remolded Loess. Journal of Physics: Conference Series, 2519(1), p.012032. https://doi.org/10.1088/1742-6596/2519/1/012032.

6. Hong Guo, Yalin Nan, Rui Guo, Jiangtao Fu. (2020). A Model for the Spacing of Quicklime Pile to Treat High Water Content Loess. Mathematical Problems in Engineering, 2020, p.1. https://doi.org/10.1155/2020/9439624.

7. Pan Liu, Xuejiao Zhang, Xueqiang Yang. (2021). Experimental Study of the Effect of a Compacted Lime-Treated Loess on Its Hydraulic Conductivity. Soil Mechanics and Foundation Engineering, 58(1), p.78. https://doi.org/10.1007/s11204-021-09709-z.

Dimensions

PlumX

Article abstract page views

461

Downloads

Download data is not yet available.