Published
Influence of Pressure and Water Content on Loess Collapsibility of the Xixian New Area in Shaanxi Province, China
Influencia de la presión y el contenido de agua sobre el índice de colapsabilidad de loess, en el distrito especial Xixian, provincia de Shaonxi, China
DOI:
https://doi.org/10.15446/esrj.v21n4.66106Keywords:
Xixian New Area, loess collapsibility, wetting, pressure, initial collapse water content (en)Distrito especial de Xixian (China), colapsabilidad de loess, humectación, presión, contenido de agua incial de colapso. (es)
Downloads
Para estimar la colapsabilidad en Xixian se realizó el test de compresión (K0), de acuerdo con el mecanismo de colapsabilidad, con diferentes combinaciones de presión (0~1.2 MPa) y contenido de agua (4%~Sat). Basado en la curva σ-ε con diferentes contenidos de agua se calcularon los coeficientes de asentamiento y colapsabilidad a partir de substracción de la curva en condiciones de saturación y analizando los efectos de presión y contenido de agua. Los resultados muestran que el promedio de colapsabilidad por su propio peso para el área de Xixian es de nivel II, con un límite bajo de hasta 14 m. La compresibilidad de loess es proporcional a la presión y al contenido de agua. Con un bajo contenido de agua, el coeficiente de colapsabilidad (δs) se incrementó mientras la presión se aumentó; pero, con contenidos medios y altos de agua, el coeficiente de colapsabilidad alcanzó su pico con el incremento de la presión, y luego bajó para prácticamente estabilizarse. Bajo presión constante, la colapsabilidad descendió al aumentar el contenido de agua. Si se asume como criterio inicial de colapso (Pi) una deformación adicional de 1.5%, Pi es linealmente proporcional al contenido de agua. El contenido de agua inicial de colapso (wi) se incrementa drásticamente cuando la presión se eleva a baja presión, sin embargo, el contenido de agua alcanza un valor constante de 26 % cuando la presión es de más de 200 kPa. Estos resultados son significativos para la investigación geotécnica y el diseño estructural en Xixian.
References
Abbasi, N., Khan, M.S., Mughal, M.S., & Yasin, M. (2017). Sedimentary Facies Analysis of Nagri Formation, Kashmir Basin, Sub-Himalayas, Pakistan. Pakistan Journal of Geology, 1(2), 03–06.
Bakar, B., Tahir, S.H., & Asis, J. (2017). Deep Marine Benthic Foraminiferal from Temburong Formation in Labuan Island. Earth Science Malaysia, 1(2), 17-22
Bata, T., Samaila, N.K., Maigari, A.S., & Ikyoive, M.B.S.Y. (2017). Common Occurrences Of Authentic Pyrite crystals in Cretaceous Oil Sands as Consequence of Biodegradation Processes. Geological Behavior, 1(2), 26–30.
Derbyshire, E., Meng, X., & Wang, J. (1995), Collapsible Loess on the Loess Plateau of China. In: Genesis and Properties of Collapsible Soils. Volume 468 of the series NATO ASI Series, pp 267-293
Francisca, F. M. (2007). Evaluating the constrained modulus and collapsibility of loess from standard penetration test. International Journal of Geomechanics, 7(4), 307-310.
Gao, G. (1980). Microstructure classification and collapsibility of Loess. Chinese science, 12, 1203-1208, 1237-1240. (In Chinese)
Gao, W., Kanna, M.R.R., Suresh, E., & Farahani, M.R. (2017). Calculating of degree-based topological indices of nanostructures. Geology, Ecology, and Landscapes, 1(3), 173-183.
Highway Research Institute of Ministry of communications (1999). GB/T 50123 - 1999 geotechnical test method standard. Beijing: China Architecture and Building Press. (in Chinese)
Hussin, H., Fauzi, N., Jamaluddin, T.A., & Arifin, M.H. (2017). Rock Mass Quality Effected by Lineament Using Rock Mass Rating (Rmr) – Case Study from Former Quarry Site. Earth Science Malaysia, 1(2), 13-16.
Ismail, I., Husain, M.L., & Zakaria, R. (2017). Attenuation of Waves from Boat Wakes in Mixed Mangrove Forest Of Rhizophora And Bruguiera Species In Matang, Perak. Malaysian Journal Geosciences, 1(2), 32-35.
Kozubal, J., & Steshenko, D. (2015). The complex compaction method of an unstable loess substrate. Arabian Journal of Geosciences, 8(8), 6189–6198
Lei, X. (1987). The pore type Chinese loess and collapsible. China Science (series B chemical biology medical science, Agronomy ), 12: 1309-1318. (In Chinese)
Liu, Z. (1997). Loess Mechanics and engineering. Shaanxi Science and Technology Press. (In Chinese)
Ma, Y., & Wang, J. (2014). Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure. Chinese Journal of Geotechnical Engineering, 36(3), 537-546
Mustafaev, A. A. (1987). Problems of the mechanics of collapsible soils and methods of solving them. Soil Mechanics and Foundation Engineering, 24(6), 213–218
People's Republic of China national standard for building construction in collapsible loess area GB 50025-2004. (2004). Beijing: China Architecture and Building Press. (in Chinese)
Rabinovich, I. G., & Urinov, M. I. (1974). Characteristics of the development of collapse in loess soils with time. Soil Mechanics and Foundation Engineering, 11(5), 331–333
Sarkar, M.I., Islam, M.N., Jahan, A., Islam, A., & Biswas, J.C. (2017). Rice straw as a source of potassium for wetland rice cultivation. Geology, Ecology, and Landscapes, 1(3), 184-189.
Sun, J., & Liu, J. (2000). Unsaturated collapsibility, residual collapsibility and multiple collapsibility of Loess. Journal of geotechnical engineering, 3, 365-367. (in Chinese)
Tariq, W., Hussain, S.Q., Nasir, A., Tayyab, N., Gillani, S.H., & Rafiq, A. (2017). Experimental Study on Strength And Durability Of Cement And Concrete By Partial Replacement Of Fine Aggregate With Fly Ash. Earth Sciences Pakistan, 1(2), 07-11.
Tunggolou, J., & Payus, C. (2017). Moringa Oleifera As Coagulant Used in Water Purification Process F or Consumption. Malaysian Journal Geosciences, 1(2), 29-31.
Usman, M., Yasin, H., Nasir, A., & Mehmood, W. (2017). A Case Study of Groundwater Contamination Due to Open Dumping of Municipal Solid Waste in Faisalabad, Pakistan. Earth Sciences Pakistan, 1(2), 12-13.
Wang, J. & Gu, T. (2013). A mechanism for self-load collapsibility-saturated loess liquefaction caused by earth micro-tremors. Applied Mechanics and Materials, 405-408,541-547
Yang, Y. (1988). Research of loess collapse mechanism. Chinese Science (B series chemical biology agronomy Medicine Science), 7, 756-766. (In Chinese)
Yasin, M., Khan, M.S., & Khan, M.R. (2017). The Modal Analysis of Rocks in The Dwelling of Poonch And Sudhunhoti, Azad Jammu And Kashmir, Pakistan. Pakistan Journal of Geology, 1(2), 07–15.
Yew, L.K., & Rahim, I.A. (2017). Prediction of Rock Mass Properties, Tunnel Stability and Support Pressure by Geological Strength Index (GSI) In Crocker Formation: A Case Study. Geological Behavior, 1(2), 31-33.
Zhang, L. (2000). Discussion on the laboratory testing method to determine the collapsibility of loess. Site Investigation Science & Technology.
Zhang, S. (2000). Terminology and basic concepts of collapsible loess. Geotechnical Engineering Technology, 1, 42-46. (In Chinese)
Zhang, S., & Zhang, W. (1992). The collapsibility of loess in the process of reducing humidity and moistening. Journal of geotechnical engineering, 1, 57-61. (In Chinese)
Zhang, S., & Zheng, J. (1990). Wetting deformation characteristics of collapsible loess (Q3). Chinese Journal of geotechnical engineering, 4, 21-31. (In Chinese)
Zhang, W., & Zhang, S. (1995). Development of research on engineering properties of loess in China. Chinese Journal of geotechnical engineering, 6, 80-88. (In Chinese)
Zhang, Z. (1980). Loess in China. GeoJournal, 4(6), 525–540
Zhenghan, C., & Zudian, L.(1986). Mechanism of collapsible deformation of Loess. Chinese Journal of geotechnical engineering, 2, 1-12. (In Chinese)
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Panpan Xu, Qiying Zhang, Hui Qian, Wengang Qu, Mengna Li. (2021). Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage. Engineering Geology, 282, p.105875. https://doi.org/10.1016/j.enggeo.2020.105875.
2. Jiading Wang, Ping Li, Yan Ma, Tonglu Li. (2018). Influence of irrigation method on the infiltration in loess: field study in the Loess Plateau. Desalination and Water Treatment, 110, p.298. https://doi.org/10.5004/dwt.2018.22329.
3. Qingyu Xie, Qiangbing Huang, Yue liu, Zhuangzhuang Wang, Daijin Yu, Jianbing Peng. (2023). Strength behaviors of undisturbed Malan loess under rainfall leaching in Yan’an area, China. Bulletin of Engineering Geology and the Environment, 82(2) https://doi.org/10.1007/s10064-022-03056-5.
4. Panpan Xu, Qiying Zhang, Hui Qian, Meng Guo, Faxuan Yang. (2021). Exploring the geochemical mechanism for the saturated permeability change of remolded loess. Engineering Geology, 284, p.105927. https://doi.org/10.1016/j.enggeo.2020.105927.
5. Longfei Zhang, Zaiqiang Hu, Hongru Li, Haicheng She, Xiaoliang Wang. (2023). Impact of water delivery pipeline leakage on collapsible loess foundations and treatment methods. Case Studies in Construction Materials, 19, p.e02341. https://doi.org/10.1016/j.cscm.2023.e02341.
6. Jie Cao, Bo Pang, Youfeng Li, Haiyuan Zhao, Xilin Lü. (2023). Experimental Study and Numerical Simulation of the Wetting Settlement of Remolded Loess. Journal of Physics: Conference Series, 2519(1), p.012032. https://doi.org/10.1088/1742-6596/2519/1/012032.
7. Hong Guo, Yalin Nan, Rui Guo, Jiangtao Fu. (2020). A Model for the Spacing of Quicklime Pile to Treat High Water Content Loess. Mathematical Problems in Engineering, 2020, p.1. https://doi.org/10.1155/2020/9439624.
8. Pan Liu, Xuejiao Zhang, Xueqiang Yang. (2021). Experimental Study of the Effect of a Compacted Lime-Treated Loess on Its Hydraulic Conductivity. Soil Mechanics and Foundation Engineering, 58(1), p.78. https://doi.org/10.1007/s11204-021-09709-z.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.