Published

2018-01-01

The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles

Relación entre las propiedades mecánicas y el deterioro gradual de la microestructura de la roca tras los ciclos de congelación-descongelación

DOI:

https://doi.org/10.15446/esrj.v22n1.66108

Keywords:

Freeze-thaw cycle, microstructure, progressive deterioration, strength damage, (en)
Ciclo congelación-descongelación, microestructura, deterioro progresivo, daño a la resistencia de la roca, (es)

Downloads

Authors

  • Haibo Jiang

Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.

En el ciclo de congelación y descongelación, la relación entre el deterioro de la microestructura de la roca y sus características mecánicas macroscópicas ha atraido un amplio interés de los investigadores. Con el objetivo de incorporar las pruebas del ciclo congelación y descongelación del canal de un túnel, en este estudio se evaluaron dos grupos de muestras de andesitas en diferentes estados bajo las condiciones de congelación a -40 ºC y de descongelación a 20 ºC. La detección del daño se realizó por el escaneo de resonancia magnética en el interior de la microestructura de las muestras de roca sujetas a diferentes ciclos de congelación y descongelación, y se analizó la relación entre las propiedades mecánicas de las muestras y el deterioro gradual de las microestructuras de la roca. Los resultados muestran una influencia evidente del ciclo de congelación y descongelación en el daño y deterioro de la estructura interna de los poros de la andesita y la fuerza compresiva uniaxial de la roca, mientras el módulo de elasticidad presenta una tendencia decreciente con el incremento de los ciclos aplicados. Después de 40 ciclos, la fuerza de las muestras de roca saturadas naturalmente cae en un 39,4 % (el equivalente a 69,4 MPa) y el modulo de elasticidad baja en un 47,46 % (equivalente al 3,27 GPa). Para las muestras saturadas por aspiradora, los cuarenta ciclos de congelación y descongelación llevan a un decrecimiento del 36,86 % (equivalente a 58,2 MPa) en la fuerza de la roca y una bajada del 44,85 % (equivalente a 2.83 GPa) en el módulo de elasticidad. Además, los resultados de la evaluación cuantitativa esclarecen la influencia sustancial de los ciclos de congelación y descongelación en el daño y deterioro de la estructura interna de la andesita. 

References

Demirdag S. (2013). Effects of freezing-thawing and thermal shock cycles on physical and mechanical properties of filled and unfilled travertines. Construction and Building Materials, 47, 1395-1401.

De Argandona, V. G. R., Rey, A. R. & Celorio, C. (1999). Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests. Physics and Chemistry of the Earth, Part A –Solid Earth Geodesy, 24, 633- 637.

Fatih B. (2012). Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Regions Science and Technology, 83-84, 98-102.

Javier, M. M., David, B., & Miguel, G. H. (2013). Non-linear decay of building stones during freeze-thaw weathering processes. Construction and Building Materials, 38, 443-454.

Kubicar, L., Vretenar, V., & Bobac. (2006). Thermophysical analysis of sandstone by pulse transient method. International Journal of Thermophysics, 27, 220-234.

Li, J., Zhou, K., & Zhang, Y. (2012). Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on unclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 31, 1208-1214.

Li, X., Lu, Y. & Wang, Y. (2013). Research on damage model of single jointed rock masses under coupling action of freeze- thaw and loading. Chinese Journal of Rock Mechanics and Engineering, 32, 2308-2315.

Liu, H., Liu, Y., & Xing, C. (2014). Test study of damage failure of jointed rock mass under freezing-thawing cycles. Rock and Soil Mechanics, 35, 1547-1554.

Matsuoka, N. (2001). Microgelivation versus macro-gelivation: towards bridging the gap between laboratory and eld frost weathering. Permafrost and Periglacial Processes, 11, 299-313.

Mutlutürk, M., Altindag, R. & Türk, G. (2004). A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling. International Journal of Rock Mechanics & Mining Sciences, 41, 237-244.

Nicholson, H., Dawn, T. & Nicholson, F. (2000). Physical deterioration of sedimentary rocks subjected to experimental freezing-thawing weathering. Earth Surface Processes and Landforms, 25, 1295-1308.

Rostasy, R. S., Weib, R. & Wiedemann, G. (1980). Changes of pore structures of cement mortars due to temperature. Cement and Concrete Research, 10, 157-164.

Wen, L., Li, X., & Yin, Y. (2013). Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application. Journal of Glaciology and Geocryology, 36, 632-639.

Yamabe, T. & Neaupane, K. M. (2001). Determination of some thermo- mechanical properties of Sirahama sandstone under subzero temperature conditions. International Journal of Rock Mechanics & Mining Sciences, 38, 1029-1034.

Yan, X., Liu, H., & Xing, C. (2015). Constitutive model research on freezing-thawing damage of rock based on deformation and propagation of microcracks. Rock and Soil Mechanics, 36, 3489-3499.

Yavuz, H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bulletin of Engineering Geology and the Environment, 70, 187-192.

Zhang, J., Miao, L. & Yang, Z. (2008). Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing. Chinese Journal of Rock Mechanics and Engineering, 27, 1688-1694.

Zhang, S. J., Lai, Y. M. & Zhang, X. F. (2004). Study on the damage propagation of surrounding rock from a cold–region tunnel under freeze-thaw cycle condition. Tunneling and Underground Space Technology, 19, 295-302.

Zhou, K. P., Hu, Z. X. & Li, J. L. (2014). Study of marble damage evolution laws under unloading conditions based on nuclear magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 33, 3523-3530.

How to Cite

APA

Jiang, H. (2018). The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles. Earth Sciences Research Journal, 22(1), 53–57. https://doi.org/10.15446/esrj.v22n1.66108

ACM

[1]
Jiang, H. 2018. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles. Earth Sciences Research Journal. 22, 1 (Jan. 2018), 53–57. DOI:https://doi.org/10.15446/esrj.v22n1.66108.

ACS

(1)
Jiang, H. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles. Earth sci. res. j. 2018, 22, 53-57.

ABNT

JIANG, H. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles. Earth Sciences Research Journal, [S. l.], v. 22, n. 1, p. 53–57, 2018. DOI: 10.15446/esrj.v22n1.66108. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66108. Acesso em: 19 aug. 2024.

Chicago

Jiang, Haibo. 2018. “The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles”. Earth Sciences Research Journal 22 (1):53-57. https://doi.org/10.15446/esrj.v22n1.66108.

Harvard

Jiang, H. (2018) “The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles”, Earth Sciences Research Journal, 22(1), pp. 53–57. doi: 10.15446/esrj.v22n1.66108.

IEEE

[1]
H. Jiang, “The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles”, Earth sci. res. j., vol. 22, no. 1, pp. 53–57, Jan. 2018.

MLA

Jiang, H. “The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles”. Earth Sciences Research Journal, vol. 22, no. 1, Jan. 2018, pp. 53-57, doi:10.15446/esrj.v22n1.66108.

Turabian

Jiang, Haibo. “The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles”. Earth Sciences Research Journal 22, no. 1 (January 1, 2018): 53–57. Accessed August 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/66108.

Vancouver

1.
Jiang H. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles. Earth sci. res. j. [Internet]. 2018 Jan. 1 [cited 2024 Aug. 19];22(1):53-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66108

Download Citation

CrossRef Cited-by

CrossRef citations14

1. Taoying Liu, Chaoyang Zhang, Jiangteng Li, Keping Zhou, Cao Ping. (2021). Detecting freeze–thaw damage degradation of sandstone with initial damage using NMR technology. Bulletin of Engineering Geology and the Environment, 80(6), p.4529. https://doi.org/10.1007/s10064-021-02242-1.

2. Huimei Zhang, Xiangzhen Meng, Xiaoyu Liu. (2021). Establishment of constitutive model and analysis of damage characteristics of frozen-thawed rock under load. Arabian Journal of Geosciences, 14(13) https://doi.org/10.1007/s12517-021-07598-y.

3. Konstantinos Laskaridis, Angeliki Arapakou, Michael Patronis, Ioannis Kouseris. (2021). Correlations between the Physical Mechanical Properties of Greek Dimension Stones. International Conference on Raw Materials and Circular Economy. , p.28. https://doi.org/10.3390/materproc2021005028.

4. Longxiao Chen, Kesheng Li, Guilei Song, Deng Zhang, Chuanxiao Liu. (2021). Effect of freeze–thaw cycle on physical and mechanical properties and damage characteristics of sandstone. Scientific Reports, 11(1) https://doi.org/10.1038/s41598-021-91842-8.

5. Xu Zeng, Bo Wang, Qian Cao, Aiming Wang, Peng Jia, Pei Zhang, Bohan Qiao. (2022). Characteristics of Jurassic source rocks and oil and gas exploration direction in the piedmont zone between the south‐western Qaidam Basin and Altun Mountain. Geological Journal, 57(10), p.4152. https://doi.org/10.1002/gj.4535.

6. Zuyong Li, Gengshe Yang. (2021). Constitutive model of frozen red sandstone based on ice-solid binary medium. Arabian Journal of Geosciences, 14(16) https://doi.org/10.1007/s12517-021-07867-w.

7. Haoran Wang, Chengchao Guo, Wei Sun, Haibo Wang, Xiaodong Yang, Fuming Wang. (2024). PERIDYNAMIC SIMULATION OF FRACTURING IN HETEROGENEOUS ROCK BASED ON X-RAY DIFFRACTION AND SCANNING ELECTRON MICROSCOPE TESTS . International Journal for Multiscale Computational Engineering, 22(3), p.67. https://doi.org/10.1615/IntJMultCompEng.2024049902.

8. Ziyi Wang, Ping Liu, Chang Luo, Yichao Jia, Zhen Chen, Depeng Ma. (2022). Study on Mechanical Properties and Acoustic Emission Characteristics of Sandstone under Freezing and Thawing. Advances in Materials Science and Engineering, 2022, p.1. https://doi.org/10.1155/2022/3196506.

9. Liewang Qiu, Chong Shi, Lingkai Zhang, Fuhai Zhang. (2024). Study on meso-deformation and failure mechanism of rock mass with micro-cracks under freeze-thaw loading. Simulation Modelling Practice and Theory, 135, p.102974. https://doi.org/10.1016/j.simpat.2024.102974.

10. Guilei Song, Longxiao Chen, Kesheng Li, Deng Zhang, Junhao Xu, Wenshuo Xu, Chuanxiao Liu, Jinpeng Zhang, Xiao Wang. (2021). Experiment and Mechanism Investigation on Freezing‐Thawing of Sandstone with Different Water Contents. Shock and Vibration, 2021(1) https://doi.org/10.1155/2021/2280348.

11. Pengtao Zhao, Ying Wang, Zhengxuan Xu, Xingwang Chang, Yunhui Zhang. (2024). Research progress of freeze–thaw rock using bibliometric analysis. Open Geosciences, 16(1) https://doi.org/10.1515/geo-2022-0663.

12. Chun Zhu, Zhipeng Li, Xing Xiansen, Manchao He, Fengnian Wang, Murat Karakus, Fuqiang Ren, Shibin Tang. (2024). Investigation on the Dynamic Cracking Mechanism of Sandstone with an Ice-Saturated Flaw Based on Drop Weight Tests. Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-024-03900-y.

13. Xiangchao Kong, Faguo He, Ran Lv, Lizhi Zhang, Xin Yang, Tengfei Lu. (2024). Experimental study on the degradation of sandstone-petroglyph carriers in Helankou: Effects of freeze-thaw and wet-dry cycles. iScience, 27(8), p.110576. https://doi.org/10.1016/j.isci.2024.110576.

14. Chu Jian, Jun Li, Changsheng Shao. (2021). Gravity anomaly characteristics and basin geological structure in Wan’an Basin. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07515-3.

Dimensions

PlumX

Article abstract page views

417

Downloads

Download data is not yet available.