Published
Determination of the sodium retardation factor using different methods: Analysis of their characteristics and impact on the solute movement prediction in a structured Brazilian soil
Determinación del factor de retardo del sodio mediante métodos diferentes: Análisis de sus características e impacto en la predicción del movimiento del soluto en un suelo brasileño estructurado
DOI:
https://doi.org/10.15446/esrj.v22n4.68100Keywords:
retardation factor, column experiment, solute transport prediction, undisturbed soil column (en)experimento de columna predicción del transporte de solutos, columna de suelo no perturbado (es)
Downloads
The retardation factor (Rd) is one of the main important solute transport parameters. Its value can vary significantly depending on the method used for its determination. In this paper, the sodium Rd is experimentally determined using undisturbed sandy columns to compare four methods of Rd determination and assess the impact of the chosen method in the prediction of sodium movement. Column experiments in undisturbed soil columns and analytical analysis were performed. The results showed that the soil has dual-porosity and preferential pathways. The breakthrough curves were in accordance with the soil’s physical characteristics. The Rd values ranged from 1.7 to 7.77 depending on the initial concentration and on the method used. These differences arise from the conceptual model of each Rd determination method. The experimental and analytical analysis indicated that the higher the Rd, the slower the movement. The methods that best reproduced the laboratory sodium movement were Ogata and Banks’ (1961), and Langmuir and Freundlich’s isotherms. The prediction models presented smaller errors with the increase of the initial concentration. In these cases, the predicted concentrations can be overestimated up to 22.5 % when using a not suitable method. Hence these results suggest that the Rd determination method can strongly affect the prediction of the sodium movement. Because of that, it is of vital importance to evaluate each method and how they can be adequate to the soil under investigation when determining Rd.
El factor de retardo (Rd) es uno de los principales parámetros para el transporte de solutos. Su valor puede variar significativamente dependiendo del método utilizado para su determinación. En este artículo, el Rd del sodio se determina experimentalmente utilizando columnas de suelo arenoso no perturbado, para comparar cuatro métodos de determinación de Rd y evaluar el impacto del método elegido en la predicción del movimiento de sodio. Se realizaron experimentos en muestras de suelo no perturbado y análisis analítico. Los resultados mostraron que el suelo tiene doble porosidad y caminos preferenciales. Las curvas de llegada estaban de acuerdo con las características físicas del suelo. Los valores de Rd variaron de 1.7 a 7.77 dependiendo de la concentración inicial y del método utilizado. Estas diferencias surgen del modelo conceptual de cada método de determinación de Rd. El análisis experimental y analítico indicó que cuanto mayor es la Rd, más lento es el movimiento. Los métodos que mejor reprodujeron el movimiento de sodio obtenido en el laboratorio fueron las isotermas de Ogata y Banks (1961), Langmuir y Freundlich. Los modelos de predicción presentaron errores más pequeños con el aumento de la concentración inicial. En estos casos, las concentraciones pronosticadas pueden sobreestimarse hasta un 22,5% cuando se utiliza un método no adecuado. Estos resultados sugieren que el método de determinación de Rd puede afectar fuertemente la predicción del movimiento de sodio. Debido a eso, al determinar Rd, es de vital importancia evaluar cada método y cómo pueden ser adecuados para el suelo bajo investigación.
References
Ahuja, L. R. (1984). Macroporosity to Characterize Spatial Variability of Hydraulic Conductivity and Effects of Land Management. Soil Science Society of America Journal, 48(4), 699. URL: https://www.soils.org/publications/sssaj/abstracts/48/4/SS0480040699.
Arthur, J. D. (2017). Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils. Journal of Contaminant Hydrology, 199, 14–23. URL: http://www.sciencedirect.com/science/article/pii/S0169772216301310.
Asgari, M. (2014) Designing a commercial scale pressure swing adsorber for hydrogen purification. Petroleum and Coal, 56(5), 552–561.
Azaroff, L. & Buerger, M. (1953). The powder method in X-ray crystallography. New York. McGraw-Hill Book Co.
Barbieri, M. (2012) Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments. Science of the Total, 426, 256–263. URL: http://www.sciencedirect.com/science/article/pii/S0048969712002707.
Brigham, W. E., Reed, P. W. & Dew, J. N. (1961). Experiments on Mixing During Miscible Displacement in Porous Media. Society of Petroleum Engineers Journal, 1(1), 1–8. URL: http://linkinghub.elsevier.com/retrieve/pii/S016977229600085X.
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon : exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Recherche, 647.
Delwiche, K., Lehmann, J. & Walter, M. (2014). Atrazine leaching from biochar-amended soils, Chemosphere, 95, 346–352. URL: http://www.sciencedirect.com/science/article/pii/S0045653513012836.
Donagema, G. & Campos, D. (2011). Manual de métodos de análise de solo. Embrapa Solos.
Dousset, S. (2007). Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns. Journal of contaminant, 94(3–4), 261–276. URL: http://www.sciencedirect.com/science/article/pii/S016977220700085X.
Eberemu, A. O., Amadi, A. A., & Edeh, J. E. (2013). Diffusion of municipal waste contaminants in compacted lateritic soil treated with bagasse ash. Environmental Earth Sciences, 70(2), 789–797. URL: http://link.springer.com/10.1007/s12665-012-2168-z.
Fagundes, J. R. T. & Zuquette, L. V. (2011). Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environmental Earth Sciences, 62(4), 831–845. URL: http://link.springer.com/10.1007/s12665-010-0570-y.
Fetter, C. (1999). Contaminant hydrogeology. 2nd edn. New York: Prentice Hall.
Fonseca, B. (2011). Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: A comparative study. Geoderma, 164(3–4), 232–237. URL: http://www.sciencedirect.com/science/article/pii/S0016706111001856.
Freeze, R. & Cherry, J. (1979). Groundwater. New Jersey: PrenticeHall Inc Englewood cliffs.
Garga, V. K. & O’Shaughnessy, V. (1994). The hydrogeological and contaminant-transport properties of fractured Champlain Sea clay in Eastern Ontario. Part 2. Contaminant transport. Canadian Geotechnical Journal, 31(6), 902–915. URL: http://linkinghub.elsevier.com/retrieve/pii/S0304389407004025.
Gerritse, R. G. (1996). Dispersion of cadmium in columns of saturated sandy soils. Journal of Environmental Quality, 25(6), 1344–1349.
Godoy, V. A., Gómez-Hernández, J. J. & Zuquette, L. V. (2018). Scale effect on hydraulic conductivity and solute transport: Small and large-scale laboratory experiments and field experiments. Engineering Geology. URL: https://linkinghub.elsevier.com/retrieve/pii/S0013795218301571.
Godoy, V. A., Zuquette, L. V. & Napa García, G. F. (2015). Transport mechanisms of sodium in sandy soil from column leaching test. In: Engineering Geology for Society and Territory - Volume 3: River Basins, Reservoir Sedimentation and Water Resources. Cham: Springer International Publishing, 197–200. URL: http://link.springer.com/10.1007/978-3-319-09054-2_39.
Godoy, V. A. & Zuqutte, L. V. (2013) Avaliação do retardamento de fosfato em colunas indeformadas de solo residual arenoso de área irrigada com efluente de tratamento de esgotos. Periódico Eletrônico Fórum Ambiental da Alta Paulista, 9(11).
Hoag, R. S. & Price, J. S. (1997). The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology, 193–205. URL: http://www.sciencedirect.com/science/article/pii/S016977229600085X.
Humenick, M. J. & Mattox, C. F. (1978) Groundwater pollutants from underground coal gasification, Water Research, 12(7), 463–469. URL: http://www.sciencedirect.com/science/article/pii/0043135478901537.
Internò, G., Lenti, V. & Fidelibus, C. (2015). Laboratory experiments on diffusion and sorption of heavy metals in a marine clay. Environmental Earth Sciences, 73(8), 4443–4449. URL: http://link.springer.com/10.1007/s12665-014-3729-0.
Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(5), 523–546. URL: http://www.bioone.org/doi/abs/10.1139/CJSS2011-050.
Jellali, S. (2010). Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes. Journal of Environmental Management, 91(4), 897–905. URL: http://linkinghub.elsevier.com/retrieve/pii/S0301479709003909.
Jury, W. A., Gardner, W. R. & Gardner, W. H. (1991). Soil Physics. John Wiley & Sons, Inc., New York, 276, 345–348.
Keng, J. & Uehara, G. (1974) Chemistry, mineralogy and taxonomy of Oxisols and Ultisols. Proceedings of the Soil and Crop Science Society.
Koorevaar, P., Menelik, G. & Dirksen, C. (1983). Elements of Soil Physics. In: P. Koorevaar, G. Menelik, & C. Dirksen (eds). Developments in Soil Science. Elsevier Science.
Lapidus, L. & Amundson, N. (1952). Mathematics of adsorption in beds VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. The Journal of Physical Chemistry, 984–988. URL: http://pubs.acs.org/doi/pdf/10.1021/j150500a014.
Liu, J. (2014) Adsorption of arsenic(V) on bone char: batch, column and modeling studies. Environmental Earth Sciences, 72(6), 2081–2090. URL: http://link.springer.com/10.1007/s12665-014-3116-x.
Logsdon-Keller, K. E. & Moorman, T. B. (2002). Measured and Predicted Solute Leaching from Multiple Undisturbed Soil Columns. Soil Science Society of America Journal, 66(3), 686–695. URL: https://www.soils.org/publications/sssaj/abstracts/66/3/686.
Malusis, M. A. & Shackelford, C. D. (2002). Theory for reactive solute transport through clay membrane barriers. Journal of Contaminant Hydrology, 59(3–4), 291–316. URL: http://www.sciencedirect.com/science/article/pii/S0169772202000414.
Markhali, S. P. & Ehteshami, M. (2016). Environmental assessment of leachate transport in saturated homogeneous media using finite element modeling. Environmental Earth Sciences, 75(16), 1193. URL: http://link.springer.com/10.1007/s12665-016-5994-6.
McMahon, M. & Thomas, G. (1974). Chloride and tritiated water flow in disturbed and undisturbed soil cores. Soil Science Society of America Journal, 38(5), 727–732.
Medeiros, S. de S. (2005). Utilização de água residuária de origem doméstica na agricultura: estudo das alterações químicas do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(4), 603–612. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662005000400026&lng=pt&tlng=pt.
Mekaru, T. & Uehara, G. (1972). Anion adsorption in ferruginous tropical soils. Proceedings of the Soil Science Society of America, 36, 296–300.
Müller, C. J. (2005). Pozzolanic Activity of Natural Clay Minerals with Respect to Environmental Geotechnics, no. 16299, 125. URL: https://www.researchgate.net/profile/Christian_Mueller4/publication/270277345_Pozzolanic_activity_of_natural_clay_minerals_with_respect_to_environmental_geotechnics/links/54a569020cf257a63608cdf6.pdf.
Ogata, A. & Banks, R. B. (1961). A solution of the differential equation of longitudinal dispersion in porous media. US Geological Survey Professional Papers, 34, 411–A.
Önal, Y., Akmil-Başar, C. & Sarici-Özdemir, Ç. (2007). Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: Kinetic, equilibrium and thermodynamic characterization. Journal of Hazardous Materials, 148(3), 727–734. URL: http://www.sciencedirect.com/science/article/pii/S0304389407004025.
Patterson, R. (1997). Domestic Wastewater and the Sodium Factor. In: Site Characterization and Design of On-Site Septic Systems. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 23-23–13. URL: http://www.astm.org/doiLink.cgi?STP13784S.
Paula e Silva, F., Kiang, C. H. & Caetano-chang, M. R. (2003). Perfis de Referência do Grupo Bauru (K) no Estado de São Paulo. Geociências UNESP, 22(especial), 21–32. URL: http://www.revistageociencias.com.br/geociencias-arquivos/22_especial/2.PDF.
Pejon, O. (1992). Mapeamento geotécnico regional da folha de Piracicaba (SP): Estudos de aspectos metodológicos de caracterização e apresentação de atributos. Universidade de São Paulo, Tese de doutorado (in Portuguese). University of São Paulo.
Porfiri, C. (2015). Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems, Geoderma, 251–252, 1–9. URL: http://www.sciencedirect.com/science/article/pii/S0016706115000877.
Shackelford, C. D. (1991). Laboratory diffusion testing for waste disposal — A review. Journal of Contaminant Hydrology, 7(3), 177–217. URL: http://linkinghub.elsevier.com/retrieve/pii/016977229190028Y.
Shackelford, C. D. (1994). Critical concepts for column testing. Journal of Geotechnical engineering, 120(10), 1804–1828. URL: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1994)120:10(1804).
Shackelford, C. D. (1995). Cumulative Mass Approach for Column Testing. Journal of Geotechnical Engineering-Asce, 121(10), 696–703. URL: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1995)121:10(696).
Shackelford, C. D. & Redmond, P. L. (1995). Solute Breakthrough Curves for Processed Kaolin at Low Flow Rates. Journal of Geotechnical Engineering, 121(1), 17–32. URL: http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9410%281995%29121%3A1%2817%29.
Silva, L. P. (2016). Retention and Solute Transport Properties in Disturbed and Undisturbed Soil Samples. Revista Brasileira de Ciência do Solo, 40.
Silva, W. T. L. (2012). Avaliação físico-química de efluente gerado em biodigestor anaeróbio para fins de avaliação de eficiência e aplicação como fertilizante agrícola. Química Nova, 35(1), 35–40. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422012000100007&lng=pt&nrm=iso&tlng=en.
Van Genuchten, M. T. & Parker, J. C. (1984). Boundary Conditions for Displacement Experiments through Short Laboratory Soil Columns 1. Soil Science Society of America Journal, 48(4), 866–872. URL: www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P0846.pdf.
Van Genuchten, M. T. & Wierenga, P. J. (1976). Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions1, Soil Science Society of America Journal, 40(4), 473. URL: https://www.soils.org/publications/sssaj/abstracts/40/4/SS0400040473.
Vanderborght, J., Timmerman, A. & Feyen, J. (2000). Solute Transport for Steady-State and Transient Flow in Soils with and without Macropores. Soil Science Society of American Journal, 64(4), 1305–1317. URL: https://www.soils.org/publications/sssaj/abstracts/64/4/1305.
Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7(4), 115–116. URL: http://www.pnas.org/content/7/4/115.short.
Zehe, E. & Flühler, H. (2001). Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. Journal of Hydrology, 247(1–2), 100–115. URL: http://linkinghub.elsevier.com/retrieve/pii/S0022169401003705.
Zuquette, L. V. & Palma, J. B. (2006). Avaliação da condutividade hidráulica em área de recarga do aqüífero Botucatu. Rem: Revista Escola de Minas, 59(1), 81–87. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672006000100011&lng=pt&tlng=pt.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Miao Yu, Xiang Li, Guanhua Li. (2021). Detection method of dissolved oxygen saturation in ecological water in coastal cities. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06867-0.
2. Adrien Saphy, María Tijero, Carlos García-Delgado, Almudena Ortega, Sergio Zamora, Ana Isabel Ruiz, Enrique Eymar, Jaime Cuevas, Raúl Fernández. (2022). Biogeofilter with Hydrothermal Treated Stevensite Clay and Laccase Enzymes for Retention and Degradation of Tetracycline. Minerals, 12(12), p.1631. https://doi.org/10.3390/min12121631.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.