Published
Climatic and hydrological changes in Gaoyou Lake, eastern China over the last millennium, inferred from pollen and grain size records
Detección de los cambios climáticos e hidrológicos en el último milenio del lago Gaoyou, al oriente de China, a través del polen, tamaño del grano y registros litológicos
DOI:
https://doi.org/10.15446/esrj.v26n2.68391Keywords:
Paleoclimate;Lake sediment;Last millennium;Grain size ;Pollen ;Gaoyou Lake (en)paleoclimate; sedimentos de lagos; último milenio; polen; lago Gaoyou. (es)
Downloads
Numerous lakes formed in the area where the Huai River and the Grand Canal converged during the historical period, and it played a substantial role in the evolution of the regional environment. Gaoyou Lake is a vital detention reservoir in the lower reaches of the Huai River. Variations in hydrology and basin-wide environmental changes were analyzed based on pollen assemblages, grain size data, and lithology from sediment cores collected at Gaoyou Lake. This study focused on variations in the hydrodynamic processes of Gaoyou Lake that were responses to changes in climate, regio- nal hydrological events, and human activity. The high percentages of pollen from terrestrial herbs and results of prin- cipal component analysis suggested that the environment of eastern China was arid from AD 900 to 1300 and that this corresponded to the dry conditions of the Medieval Climate Anomaly. The subsequent period between AD 1300 and 1650 was more humid, as revealed by an increase in aquatic pollen and a decrease in grain size. A rise in xerophytic herb taxa (particularly Artemisia and Chenopodioideae) indicated that the climate became arid again from AD 1650 to 1850, during the Little Ice Age. The modern period (AD 1850 onwards) was characterized by another increase in moisture, as reflected by a decrease in herb pollen and grain sizes. The shifts in the course of the Yellow River in AD 1194 and AD 1855 were recorded by abrupt changes in lithology, sediment characteristics, and the percentages of alien pollen taxa. Intense human impacts were demonstrated by cereal-type pollen and an increase in pollen of other cultivated plants such as Cruciferae and Poaceae. This study provides a foundation for further analysis of the dynamic mechanisms between lake development, climate change, and the effects of significant river changes.
Varios lagos se formaron en el área donde convergen el río Huai y el Gran Canal durante el período histórico, lo que jue- ga un rol importante en la evolución del entorno regional. El lago Gaoyou es un importante reservorio en los segmentos bajos del río Huai. En este trabajo se analizaron las variaciones en hidrología y los cambios ambientales de la cuenca amplia con base en los grupos de polen, tamaño del grano y litología de las muestras de sedimento recolectadas en el lago Gaoyou. Este trabajo se enfoca en las variaciones de los procesos hidrodinámicos del lago Gaoyou que fueron las respuestas a los cambios del clima, los eventos hidrológicos regionales, y la actividad humana. Los altos porcentajes de polen de las hierbas terrestres y los resultados de los análisis de componentes principales sugieren que el ambiente de la China oriental fue árido entre los años 900 a 1300 DC y esto se corresponde con las condiciones de sequía del Período Cálido Medieval. El período subsecuente entre 1300 y 1650 fue más húmedo, como se revela por un incremento en el polen acuático y en el decrecimiento del tamaño del grano. Un incremento en el taxón de las hierbas xerófitas (espe- cialmente Artemisias y Chenopodioideaes) indica que el clima se tornó arido de nuevo entre 1650 y 1850, durante la Pequeña Edad de Hielo. El período moderno (de 1850 en adelante) se caracterizó por otro incremento en la húmedad, como se refleja en un decrecimiento del polen de hierbas y en los tamaños del grano. Los cambios en el curso del Río Amarillo entre 1194 y 1855 se registran por las variaciones abruptas en la litología, las características de los sedimentos y los porcentajes en los taxones de polen alienígena. Los impactos humanos intensos se demuestran con la ocurrencia de polen tipo cereal y un incremento en el polen de otras plantas cultivadas como las cruciferas y las poáceas. Este estudio presenta una base para análisis posteriores de los mecanismos dinámicos entre el desarrollo del lago, el cambio climático y los efectos de los mayores cambios de los ríos.
References
Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package of the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237-1248. https://doi.org/10.1002/esp.261. DOI: https://doi.org/10.1002/esp.261
Bush, M. B. (2002). On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(s 1-2), 5-17. https://doi.org/10.1016/S0031-0182(01)00348-0. DOI: https://doi.org/10.1016/S0031-0182(01)00348-0
Chen, F. H., Chen, J. H., Holmes, J., Boomer, I., Austin, P., Gates, J. B., Wang, N. L., Brooks, S. J., & Zhang, J. W. (2010). Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7-8), 1055-1068. https://doi.org/10.1016/j.quascirev.2010.01.005. DOI: https://doi.org/10.1016/j.quascirev.2010.01.005
Chen, J. H., Chen, F. H., Feng, S., Huang, W., Liu, J. B., & Zhou, A. F. (2015). Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms. Quaternary Science Reviews, 107, 98-111. https://doi.org/10.1016/j.quascirev.2014.10.012. DOI: https://doi.org/10.1016/j.quascirev.2014.10.012
Chen, J. J., Jiang, T., & Xu, P. Z. (1998). Climatic changes during the last 2000 years in Jiangsu Province. Scientia Geographica Sinica, 18, 219-226. https://doi.org/10.13249/j.cnki.sgs.1998.03.219
Chen, J. A., Wan, G. J., Zhang, F., David, D. Z., & Huang, R. G. (2003). Lacustrine sediments records of different time scales: a case study of sediment grain size. Science in China (Series D), 33(6), 563-568. https://doi.org/10.3321/j.issn:1006-9267.2003.06.010.
Chen Y. Y., Chen S. Y., Liu J. Z., Yao M., Sun W. B., & Zhang Q. (2013). Environmental evolution and hydrodynamic process of Dongping Lake in Shandong Province, China, over the past 150 years. Environmental Earth Sciences, 68, 69-75. https://doi.org/10.1007/s12665-012-1716-x. DOI: https://doi.org/10.1007/s12665-012-1716-x
Chen, Y., Guan Y. Q., Miao J. Z., & Zhang, D. R. (2017). Determination of the ecological water-level and assuring degree in Gaoyou Lake, Northern Jiangsu with long-term hydrological alteration. Journal of Lake Sciences, 29(2), 398-408. https://doi.org/10.18307/2017.0216. DOI: https://doi.org/10.18307/2017.0216
Djamali, M., de Beaulieu, J. L., Andrieu-Ponel, V., Berberian, M., Miller, N. F., Gandouin, E., Lahijiani, H., Shah-Hosseini, M., Ponel, P., Salimian, M., & Guiter, F. (2009). A late Holocene pollen record from Lake Almalou in NW Iran: evidence for changing land-use in relation to some historical events during the last 3700 years. Journal of Archaeological Science, 36(7), 1364-1375. https://doi.org/10.1016/j.jas.2009.01.022. DOI: https://doi.org/10.1016/j.jas.2009.01.022
Faegri, K., Kaland, P. E., & Krzywinski, J. (1989). Textbook of Pollen Analysis. John Wiley & Sons, Chichester. https://doi.org/10.2307/3038005. DOI: https://doi.org/10.2307/3038005
Folk, R. L., & Ward, W. C. (1957). Brazos River Bar: A Study in the Signification of Grain Size Parameters. Journal of Sedimentary Research, 27 (1), 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D. DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Gao, J. H., Xu, X. A., Jia, J. J., Kettner, A. J., Xing, F., Wang, Y. P., Yang, Y., Qi, S. H., Liao, F. Q., Li, J., Bai, F. L., Zou, X. Q., & Gao, S. (2015). A numerical investigation of freshwater and sediment discharge variations of Poyang Lake catchment, China over the last 1000 years. The Holocene, 25(9), 1470-1482. https://doi.org/10.1177/0959683615585843. DOI: https://doi.org/10.1177/0959683615585843
Ge, Q. S., Fang, X. Q., & Zheng, J. Y. (2014). Learning from the historical impacts of climatic change in China. Advances in Earth Science, 29(1), 23-29. https://doi.org/10.11867/j.issn.1001-8166.2014.01-0023.
Geng, R., Zhao, Y., Cui, Q., & Qin, F. (2019). Reprensentation of modern pollen assemblages with respect to vegetation and climate in Northeast China. Quaternary International, 532, 126-137. https://doi.org/10.1016/j.quaint.2019.11.003. DOI: https://doi.org/10.1016/j.quaint.2019.11.003
Ghilardi, M., Kunesch, S., Styllas, M., & Fouache, E. (2008). Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses. Geomorphology, 97(3-4), 617-630. https://doi.org/10.1016/j.geomorph.2007.09.007. DOI: https://doi.org/10.1016/j.geomorph.2007.09.007
Grimm, E. C. (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences, 13(13), 13–35. https://doi.org/10.1016/0098-3004(87)90022-7. DOI: https://doi.org/10.1016/0098-3004(87)90022-7
Guan, Y., Yu, G., Han, R., Xu, J., Huo, D., & Wang, Q. (2019). Changes in water area of Gaoyou Lake (including Shaobo Lake) and the influencing factors in the past 30 years. Research of Environmental Sciences, 32(12), 2057-2064. DOI: 10.13198/j.issn.1001-6929.2019.06.27
Ming, G. D., Zhou, W. J., Wang H., Shu P. X, Cheng P., Liu T. B., & Zhou J. (2021). Grain size variation in two lakes from margin of Asian Summer Monsoon and its paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110295. https://doi.org/10.1016/j.palaeo.2021.110295. DOI: https://doi.org/10.1016/j.palaeo.2021.110295
He, C. H., Ding, H. Y., Zhang, Z. K., Shi, X. D., Li, S. H., & Mao, L. J. (2005). Grain-size characteristics and their environmental significance of Hongze Lake sediment. Scientia Geographica Sinica, 25(5), 590-596. https://doi.org/CNKI:SUN:DLKX.0.2005-05-012.
Herzschuh, U., Kramer, A., Mischke, S., & Zhang, C. J. (2009). Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quaternary Research, 71(2), 162-171. https://doi.org/10.1016/j.yqres.2008.09.003. DOI: https://doi.org/10.1016/j.yqres.2008.09.003
Jia, J. J., Gao, J. H., Liu, Y. F., Gao, S., & Yang Y. (2012). Environmental changes in Shamei Lagoon, Hainan Island, China: Interactions between natural processes and human activities. Journal of Asian Earth Sciences, 52, 158-168. https://doi.org/10.1016/j.jseaes.2012.03.008. DOI: https://doi.org/10.1016/j.jseaes.2012.03.008
Jiang, Q. F., Ji, J. F., Shen, J., Matsumoto, R., Tong, G. B., Qian, P., Ren, X. M., & Yan, D. Z. (2013). Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. China Earth Sciences, 56(3), 339-353. https://doi.org/10.1007/s11430-012-4550-9. DOI: https://doi.org/10.1007/s11430-012-4550-9
Kliem, P., Enters, D., Hahn, A., Ohlendorf, C., Lise-Pronovost, A., St-Onge, G., Wastegard, S., & Zolitschka, B. (2013). Lithology, radiocarbon chronology and sedimentological interpretation of the lacustrine record from Laguna Potrok Aike, southern Patagonia. Quaternary Science Reviews, 71, 54-69. https://doi.org/10.1016/j.quascirev.2012.07.019. DOI: https://doi.org/10.1016/j.quascirev.2012.07.019
Lerman, A. (1979). Lake: Chemistry, Geology, Physics. Science, 204(4395), 825-826. https://doi.org/10.1126/science.204.4395.825. DOI: https://doi.org/10.1126/science.204.4395.825-a
Li, J. Y., Zhao, Y., Xu, Q. H., Zheng, Z., Lu, H. Y., Luo, Y. L., Li, Y. C, Li, C. H., & Seppa, H. (2014). Human influence as a potential source of bias in pollen-based quantitative climate reconstructions. Quaternary Science Reviews, 99(9), 112-121. https://doi.org/10.1016/j.quascirev.2014.06.005. DOI: https://doi.org/10.1016/j.quascirev.2014.06.005
Li, S. H., Fu, G. H., Guo, W., He, H. C., & Zhang, Z. K. (2007). Environmental changes during modern period from the record of Gaoyou Lake sediments, Jiangsu. Journal of Geographical Sciences, 17(1), 62-72. https://doi.org/10.1007/s11442-007-0062-5. DOI: https://doi.org/10.1007/s11442-007-0062-5
Li, S. H., Guo, W., & Mitchell, B. (2011). Evaluation of water quality and management of Hongze Lake and Gaoyou Lake along the Grand Canal in Eastern China. Environmental monitoring and assessment, 176(1-4), 373–384. https://doi.org/10.1007/s10661-010-1590-5. DOI: https://doi.org/10.1007/s10661-010-1590-5
Li, S. H., Guo, W., Yin, Y., Jin, X. Y., & Tang, W. (2015). Environmental changes inferred from lacustrine sediments and historical literature: A record from Gaoyou Lake, eastern China. Quaternary International, 380, 350-357. https://doi.org/10.1016/j.quaint.2015.01.010. DOI: https://doi.org/10.1016/j.quaint.2015.01.010
Li, Y., Wang, N., Morrill, C., Cheng, H. Y., Long, H., & Zhao, Q. (2009). Environmental change implied by the relationship between pollen assemblages and grain-size in N.W. Chinese lake sediments since the Late Glacial. Review of Palaeobotany & Palynology, 154(1-4), 54-64. https://doi.org/10.1016/j.revpalbo.2008.12.005. DOI: https://doi.org/10.1016/j.revpalbo.2008.12.005
Li, Y. Y., Zhou, L. P., & Cui, H. T. (2008). Pollen indicators of human activity. Chinese Science Bulletin, 53(9), 1281-1293. https://doi.org/10.1007/s11434-008-0181-0. DOI: https://doi.org/10.1007/s11434-008-0181-0
Liao, G. M. (1992). Formation and evolution of the Gaoyou Lake, Jiangsu Province. Acta Geographica Sinica, 47(2), 139–145. https://doi.org/10.11821/xb199202005.
Ling, S. (2001). Palaeogeographic changes of the Lixiahe district since the Holocene. Scientia Geographica Sinica, 21(5), 474–479. https://doi.org/10.3969/j.issn.1000-0690.2001.05.017.
Michael, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256-1260. https://doi.org/10.1126/science.1177303. DOI: https://doi.org/10.1126/science.1177303
Peng, Y. B., Xu, Y., & Jin, L. Y. (2009). Climate changes over eastern China during the last millennium in simulations and reconstructions. Quaternary International, 208(1-2), 11-18. https://doi.org/10.1016/j.quaint.2009.02.013. DOI: https://doi.org/10.1016/j.quaint.2009.02.013
Peteet, D., Nichols, J., Pederson, D., Kenna, T., Chang, C., Newton, B., & Vincent, S. (2020). Climate and anthropogenic controls on blue carbon sequestration in Hudson River tidal marsh, Piermont, New York. Environmental Research Letters, 15(6), 065001. https://doi.org/10.1088/1748-9326/ab7a56. DOI: https://doi.org/10.1088/1748-9326/ab7a56
Simonneau, A., Chapron, E., Vanniere, B., Wirth, S. B., Gilli, A., Di Giovanni, C., Anselmetti, F. S., Desmet, M., & Magny, M. (2013). Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards. Climate of the Past, 9(2), 825-840. https://doi.org/10.5194/cp-9-825-2013. DOI: https://doi.org/10.5194/cp-9-825-2013
Sirocko, F., Dietrich, S., Veres, D., Grootes, P. M., Schaber-Mohr, K., Seelos, K., Nadeau, M. J., Kromer, B., Rothacker, L., Rohner, M., Krbetschek, M., Appleby, P., Hambach, U., Rolf, C., Sudo, M., & Grim, S. (2013). Multi-proxy dating of Holocene maar lakes and Pleistocence dry maar sediments in the Eifel, Germany. Quaternary Science Reviews, 62(62), 56-76. https://doi.org/10.1016/j.quascirev.2012.09.011. DOI: https://doi.org/10.1016/j.quascirev.2012.09.011
Soon, W., Bahunas, S., Idso, C., Idso, S., & Legates, D. R. (2003). Reconstructing climatic and environmental changes of the past 1000 years: reappraisal. Energy and Environment, 14, 233-296. https://doi.org/10.1260/095830503765184619. DOI: https://doi.org/10.1260/095830503765184619
Sun, L. Q., Liang, X., Ma, B., Li J., Zhang, X., Song, C., & Li, L. (2021). Characteristics of sedimentary environment since Quaternary in northern Jianghan Basin, China: Reconstruction of paleoenvironments. Quaternary International, 589, 12-24. https://doi.org/10.1016/j.quaint.2021.03.034. DOI: https://doi.org/10.1016/j.quaint.2021.03.034
Sun, Z. Y., Li, G., & Yin, Y. (2015). The Yangtze River deposition in southern Yellow Sea during Marine Oxygen Isotope Stage 3 and its implications for sea-level changes. Quaternary Research, 83(1), 204-215. https://doi.org/10.1016/j.yqres.2014.08.008. DOI: https://doi.org/10.1016/j.yqres.2014.08.008
Sun. Z., Yuan, K., Hou, X., Ji, K., Li, C., Wang, M., & Hou, J. (2020). Centennial-scale interplay between the Indian Summer Monsoon and the Westerlies revealed from Ngamring Co, southern Tibetan Plateau. The Holocene, 30(8), 1163-1173. https://doi.org/10.1177/0959683620913930. DOI: https://doi.org/10.1177/0959683620913930
Ter Braak, C. J. F. (1988). CANOCO - A Fortran Program for Canonical Community Ordination by [Partial] [Detrended] [Canonical] Correspondence analysis, principal components analysis and redundancy analysis, version 2.1. Agricultural Mathematics Group, Wageningen, The Netherlands.
Tong, X. F., Xiao, X. Y., Yang, X. D., Wang, S. M., & Xiao, J. Y. (2009). Climatic changes and human activities revealed by pollen records in Lake Taibai, Hubei Province, the middle and lower reaches of the Yangtze River region over the past 1500 years. Journal of Lake Sciences, 21(5), 732-740. https://doi.org/10.3321/j.issn:1003-5427.2009.05.019. DOI: https://doi.org/10.18307/2009.0519
Wang, H., & Yang, J. (1990). Annals of Gaoyou County. Nanjing: Jiangsu People’s Press. p149.
Wang, S., & Dou, H. (1998). Annals of lakes in China. Science Press, Beijing.
Wei, W. X., Chen, R. M., Wang L. F., & Fu, L. X. (2017). Spatial distribution of crustacean zooplankton in a large river-connected lake related to trophic status and fish. Journal of limnology, 76(3), 546-554. https://doi.org/10.4081/jlimnol.2017.1622. DOI: https://doi.org/10.4081/jlimnol.2017.1622
Xia, W. L., Wang, Y. F., & Pan, H. X. (1995). Modern sedimentation rate dating and environmental implication of Nushan Lake. Journal of Lake Science, 7(4), 314-320. https://doi.org/CNKI:SUN:FLKX.0.1995-04-003. DOI: https://doi.org/10.18307/1995.0404
Xie, Y. Y., Li, C. A., Wang, Q. L., & Ying, H. F. (2008). Palynological records of early human activities in Holocene at Jiangling Area, Hubei Province. Scientia Geographica Sinica, 28(2), 276-281. https://doi.org/10.3969/j.issn.1000-0690.2008.02.026.
Xu, J. X. (1993). A study of long term environmental effects of river regulation on the Yellow River of China in historical perspective. Geografiska Annaler. Series A, Physical Geography, 75(3), 61-72. https://doi.org/10.2307/521025. DOI: https://doi.org/10.1080/04353676.1993.11880385
Xu, Q. H., Li, Y. C., Yang, X. L., & Zheng, Z. H. (2007). Quantitative relationship between pollen and vegetation in northern China. Science in China Series D: Earth Sciences, 50(4), 582-599. https://doi.org/10.1007/s11430-007-2044-y. DOI: https://doi.org/10.1007/s11430-007-2044-y
Xu, Q., Yang, X., Chen, W., Meng, L., & Wang, Z. (1996). Alluvial pollen on the North China Plain. Quaternary Researh, 46, 270-280. https://doi.org/10.1006/qres.1996.0066. DOI: https://doi.org/10.1006/qres.1996.0066
Yang, B., Brauning, A., Johnson, K. R., & Shi, Y. F. (2002). General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters, 29(9), 1324. https://doi.org/10.1029/2001GL014485. DOI: https://doi.org/10.1029/2001GL014485
Yang, D., & Wang, Y. F. (1995). On change of geographic environment and flood damage along the Huaihe River Basin during the last 2000 years. Journal of Lake Science, 7(1), 1-7. https://doi.org/10.18307/1995.0101. DOI: https://doi.org/10.18307/1995.0101
Zhang, C., Zhou, A. F., Zhang, X. N., Wu, D., & Hao, S. T. (2015). Identification of Paleaoflood events by lacustrine archives and their links to climatic conditions. Progress in Geography, 34(7): 898-908. https://doi.org/10.18306/dlkxjz.2015.07.011. DOI: https://doi.org/10.18306/dlkxjz.2015.07.011
Zhang, L., Cheng, Y., Niu, Y., & Jiang, J. (2020). Analysis and prediction of eutrophication for advanced warning of the water quality concerns in Gaoyou Lake. Water Supply, 20(1), 186-196. https://doi.org/10.2166/ws.2019.148. DOI: https://doi.org/10.2166/ws.2019.148
Zhang, W. C., Li, C. H., Lu, H. Y., Tian, X. H., Zhang, H. Y, Lei, F., & Tang, L. Y. (2014). Relationship between surface pollen assemblages and vegetation in Luonan Basin, eastern Qinling Mountains, central China. Journal of Geographical Sciences, 24(3), 427-455. https://doi.org/10.1007/s11442-014-1098-y. DOI: https://doi.org/10.1007/s11442-014-1098-y
Zhang, Y. H. (1990). The history of introduction and cultivation of ancient Chinese maize. Seed World, 40(12), 40. https://doi.org/CNKI:SUN:SJZZ.0.1990-12-042.
Zhang, Z. K., Wang, S. M., Shen, J., Wu, Y., Xia, W. L., & Zhang, Z. L. (1999). River channel changes recorded by lake sediments in Nansihu Lake, the lower reaches of the Yellow River. Journal of Lake Sciences, 11(3), 231-236. https://doi.org/10.18307/1999.0307. DOI: https://doi.org/10.18307/1999.0307
Zhao, Y. T., Miao, Y. F., Fang, Y. M., Li, Y., Lei, Y., Chen, X. M., Dong, W. M., & An, C. B. (2021). Investigation of factors affecting surface pollen assemblages in the Balikun Basin, central Asia: Implications for palaeoenvironmental reconstructions. Ecological Indicators, 123, 107332. https://doi.org/10.1016/j.ecolind.2020.107332. DOI: https://doi.org/10.1016/j.ecolind.2020.107332
Zheng, J. Y., Wang, W. C., Ge, Q. S., Man, Z., & Zhang, P. Y. (2006). Precipitation variability and extreme events in eastern China during the past 1500 years. Terrestrial Atmospheric & Oceanic Sciences, 17(3), 579-592. https://doi.org/10.3319/TAO.2006.17.3.579(A). DOI: https://doi.org/10.3319/TAO.2006.17.3.579(A)
Zheng, J. Y., & Wang, S. W. (2005). Assessment on climate change in China for the last 2000 years. Journal of Geographical Sciences, 60(1), 21-31. https://doi.org/10.3321/j.issn:0375-5444.2005.01.003.
Zhu, K. Z. (1973). A preliminary study on the climatic fluctuations during the past 5000 years in China. Science Sinica, 16(2), 226-256.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2022 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.