Published
A mathematical approach for assessing landslide vulnerability
Un modelo matemático para la evaluación de la vulnerabilidad por deslizamientos
DOI:
https://doi.org/10.15446/esrj.v22n4.68553Keywords:
Landslide vulnerability, quantitative vulnerability, vulnerability assessment, landslide risk analysis, vulnerability T-Model (en)Vulnerabilidad por deslizamientos, cuantificaciòn de la vulnerabilidad, model T de vulnerabilidad (es)
Downloads
A natural phenomenon (hazard) may be characterized in terms of temporal, spatial and magnitude probabilities. The effects of the interaction between the hazard and the exposed element depend on the intensity of the hazard and on the resistance, sometimes called susceptibility, of the element at risk, which describes the propensity of a building or other infrastructure to suffer damage from a specific hazard impact. Consequently, a modern concept of vulnerability must consider the intensity of the hazard as well as the structural resistance of the exposed infrastructure. This concept is referred to as physical vulnerability, and the most accepted definition is a representation of the expected degree of loss quantified on a scale of 0 (no damage) to 1 (total destruction). Thus, this work presents a mathematical model for landslide physical vulnerability assessment, here named the T-Model, based on the “Principle of Natural Proportionality” and calibrated with field observations of the massive rainfall-triggered landslide event that occurred in Nova Friburgo, Brazil in November of 2011. The model was also calibrated for a flow-type movement that is based on field observations of the failure of a tailing dam that affected the district of Bento Rodrigues, Brazil in November of 2015. The results showed a good agreement between predictions and the observed level of damages. Thus, it is possible to conclude that from a mathematical point of view, the model may be qualified as universal. It is recognized that a real universal objective model for vulnerability to landslides is not practical at present. More important than the model itself is the methodology that is presented here, which leads the user to take qualitative damage information from the field and develop it into a quantitative mathematical framework. Potential users of the T-Model must be cautious regarding the values of parameters that are presented in this paper. The T-Model is just a modest proposal that requires further calibration and deep expert criticisms.
References
Aristizábal-Giraldo, E. V. (2008). Characteristics, Dynamic and Causes of the El Socorro Landslide (May 31, 2008) in Medellín, Colombia (in Spanish). Revista EIA, 10, 19–29.
Aristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., & Guerra, A. (2011). Analysis of Empirical Rainfall Thresholds for the Prognosis of Lanslides in the Aburrá Valley, Colombia. Revista EIA, 8(15), 95–111.
Bell, R., & Glade, T. (2004). Quantitative Risk Analysis for Landslides; Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Science, 4(1), 117–31. https://doi.org/10.5194/nhess-4-117-2004.
Birkmann, J., Cardona, O. D., Carreno, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., & Kienberger, S. (2013). Framing Vulnerability, Risk and Societal Responses: The MOVE Framework. Natural Hazards, 67(2), 193–211. https://doi.org/10.1007/s11069-013-0558-5.
Ciurean, R. L., & Dagmar, S. (2013). Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In: Intech (Eds) Science, Technology & Medicine Open Access Book Publisher, 32.
Claghorn, J., Orsini, F. M., Echeverri-Restrepo, C. A., & Werthmann, C. (2016). Rehabitar La Montaña : Strategies and Processes for Sustainable Communities in the Mountainous Periphery of Medellín. Brazilian Journal of Urban Management, 8(1), 42–60. https://doi.org/10.1590/2175-3369.008.001.SE03.
Corominas, J., Copons, R., Vilaplana, J. M., Altimir, J., & Amigó, J. (2003). Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra. Natural Hazards, 30, 421–435.
Entralgo, J. F. T. (2013). Análise Espacial E Estatística Dos Movimentos de Massa Deflagrados Pelas Chuvas Dos Dias 11 E 12 de Janeiro de 2011 Na Região Serrana Do Estado Do Rio de Janeiro, Brasil. University of Brasilia.
Fell, R., Ho, K. K. S., Lacasse, S., & Leroi, E. (2005). State of the Art Paper 1 A Framework for Landslide Risk Assessment and Management. International Conference on Landslide Risk Management, Vancouver, Canada, Vol. 31.
Fuchs, S., Heiss, K. & Hübl, J. (2007). Towards an Empirical Vulnerability Function for Use in Debris Flow Risk Assessment. Natural Hazards and Earth System Science, 7(5), 495–506. https://doi.org/10.5194/nhess-7-495-2007.
Glade, T., Anderson, M., & Crozier, M. J. (2005). Landslide Hazard and Risk.
Guimaraes-Silva, M. T. M. (2015). Avaliação Quantitativa Da Vulnerabilidade de Edificações Associada a Processos de Deslizamentos de Encostas. Tese de Doutorado, Publicação G.TD - 113/15, Departamento de Engenharia Civil E Ambiental, Universidade de Brasília, Brasília, DF, 105 P.
Hollenstein, K. (2005). Reconsidering the Risk Assessment Concept: Standardizing the Impact Description as a Building Block for Vulnerability Assessment. Natural Hazards and Earth System Science 5(3), 301–307. https://doi.org/10.5194/nhess-5-301-2005.
Hungr, O. (1995). A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches. Canadian Geotechnical Journal. https://doi.org/10.1139/t95-063.
Iverson, R. M., Logan, M., & Denlinger, R. P. (2004). Granular Avalanches across Irregular Three-Dimensional Terrain: 2. Experimental Tests. Journal of Geophysical Research, 109, 1–16. https://doi.org/10.1029/2003JF000084.
Jaiswal, P., van Westen, C. J. & Jetten, V. (2010). Quantitative Landslide Hazard Assessment along a Transportation Corridor in Southern India. Engineering Geology 116 (3–4), 236–250. https://doi.org/10.1016/j.enggeo.2010.09.005.
Juarez-Badillo, E. (1985). General Volumetric Constitutive Equation for Geomaterials. In: XI Internacional Conference on Soil Mechanics and Foundation Engineering. Special Volume on Constitutive Laws of Soils. Edited by Japanese Society of Soil Mechanics and Foundations. San Francisco, CA, USA.
Chu, J., & Leong, W. K. (1997). Static Liquefaction of Very Loose Sands: Discussion. Canadian Geotechnical Journal, 34(6), 905–917. https://doi.org/10.1139/t99-027.
Kang, H. & Kim, Y. T. (2015). The Physical Vulnerability of Different Types of Building Structure to Debris Flow Events. Natural Hazards. https://doi.org/10.1007/s11069-015-2032-z.
Klose, M., Maurischat, P., & Damm, B. (2015). Landslide Impacts in Germany: A Historical and Socioeconomic Perspective. Landslides, no. November 2014, 183–99. https://doi.org/10.1007/s10346-015-0643-9.
Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards. Landslides, 7(2), 125–34. https://doi.org/10.1007/s10346-009-0190-3.
Liu, X. & Lei, J. (2003). A Method for Assessing Regional Debris Flow Risk: An Application in Zhaotong of Yunnan Province (SW China). 52, 181–191. https://doi.org/10.1016/S0169-555X(02)00242-8.
Llano-Serna, M. A., Farias, M. M. & Martínez-Carvajal, H. E. (2015). Numerical Modelling of Alto Verde Landslide Using the Material Point Method. Dyna, 82, 150–159. https://doi.org/10.15446/dyna.v82n194.48179.
Margottini, C., Canuti, P. & Sassa, K. (2013). Landslide Science and Practice. Vol. 4. Rome, Italy: Springer Netherlands.
Mergili, M., Fellin, W., Moreiras, S. & Stötter, J. (2012). Simulation of Debris Flows in the Central Andes Based on Open Source GIS: Possibilities, Limitations, and Parameter Sensitivity. Natural Hazards, 61(3), 1051–1081. https://doi.org/10.1007/s11069-011-9965-7.
Nicu, I. C. (2016). Cultural heritage assessment and vulnerability using Analytic Hierarchy Process and Geographic Information Systems (Valea Oii catchment, North-eastern Romania). An approach to historical maps. International Journal of Disaster Risk Reduction 20, 103–111. doi:10.1016/j.ijdrr.2016.10.015.
Nicu, I. C. (2018). Natural risk assessment and mitigation of cultural heritage sites in North-eastern Romania (Valea Oii river basin). Area. doi:10.1111/area.12433 (accepted, in press).
Nocentini, M., Tofani, V., Gigli, G., Fidolini, F., & Casagli, N. (2015). Modeling Debris Flows in Volcanic Terrains for Hazard Mapping: The Case Study of Ischia Island (Italy). Landslides, 12(5), 831–46. https://doi.org/10.1007/s10346-014-0524-7.
O’Brien, K.; Eriksen, S.; Nygaard, L. P. & Schjolden, A. (2007). Why Different Interpretations of Vulnerability Matter in Climate Change Discourses. Climate Policy, 7(1), 73–88. https://doi.org/10.1080/14693062.2007.9685639.
Pascale, S., Sdao, F., & Sole, A. (2010). A Model for Assessing the Systemic Vulnerability in Landslide Prone Areas. Natural Hazards and Earth System Science, 10(7), 1575–1590. https://doi.org/10.5194/nhess-10-1575-2010.
Quan-Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J. & Akbas, S. O. (2011). The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves. Natural Hazards and Earth System Science, 11(7), 2047–2060. https://doi.org/10.5194/nhess-11-2047-2011.
Totschnig, R. & Fuchs, S. (2013). Mountain Torrents: Quantifying Vulnerability and Assessing Uncertainties. Engineering Geology, 155, 31–44. https://doi.org/10.1016/j.enggeo.2012.12.019.
Unesco. (1979). Natural Disasters and Vulnerability Analysis. UNDRO. New York: UNESCO.
Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A Conceptual Framework for Quantitative Estimation of Physical Vulnerability to Landslides. Engineering Geology, 102(3–4), 251–256. https://doi.org/10.1016/j.enggeo.2008.03.011.
van Westen, C. J., van Asch, T. W. J. & Soeters, R. (2006). Landslide Hazard and Risk Zonation—why Is It Still so Difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–84. https://doi.org/10.1007/s10064-005-0023-0.
van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30, 399–419.
Zêzere, J. L., Garcia, R., Oliveira, S. C. & Reis, E. (2008). Probabilistic Landslide Risk Analysis Considering Direct Costs in the Area North of Lisbon (Portugal). Geomorphology, 94, 467–495. https://doi.org/10.1016/j.geomorph.2006.10.040.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Chu Jian, Jun Li, Changsheng Shao. (2021). Gravity anomaly characteristics and basin geological structure in Wan’an Basin. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07515-3.
2. Xun Huang, Zhijian Zhang, Guoping Xiang. (2023). Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations. Natural Hazards and Earth System Sciences, 23(2), p.871. https://doi.org/10.5194/nhess-23-871-2023.
3. Roberto J. Marin, María Fernanda Velásquez, Edwin F. García, Massimiliano Alvioli, Edier Aristizábal. (2021). Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. CATENA, 206, p.105563. https://doi.org/10.1016/j.catena.2021.105563.
4. María Isabel Hurtado, Johnny Alexander Vega, César Augusto Hidalgo. (2020). Comparison of Geometric and Experimental Models for the Assessment of the Runout and Deposition Height of a Debris Flow in Cohesive Soils. IOP Conference Series: Materials Science and Engineering, 960(2), p.022027. https://doi.org/10.1088/1757-899X/960/2/022027.
5. LUIS CARLOS LEGUIZAMÓN BARRETO, JULY ROJAS. (2021). A review of the relation between climate variability and mass removal processes. Ingeniería Solidaria, 17(1), p.1. https://doi.org/10.16925/2357-6014.2021.01.03.
6. Siyi Huang, Hongqiang Dou, Wenbin Jian, Chaoxu Guo, Yongxin Sun. (2023). Spatial prediction of the geological hazard vulnerability of mountain road network using machine learning algorithms. Geomatics, Natural Hazards and Risk, 14(1) https://doi.org/10.1080/19475705.2023.2170832.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.