Published

2018-10-01

A mathematical approach for assessing landslide vulnerability

Un modelo matemático para la evaluación de la vulnerabilidad por deslizamientos

DOI:

https://doi.org/10.15446/esrj.v22n4.68553

Keywords:

Landslide vulnerability, quantitative vulnerability, vulnerability assessment, landslide risk analysis, vulnerability T-Model (en)
Vulnerabilidad por deslizamientos, cuantificaciòn de la vulnerabilidad, model T de vulnerabilidad (es)

Downloads

Authors

  • Hernan Eduardo Martinez-Carvajal University of Brasilia/Universidad Nacional de Colombia https://orcid.org/0000-0001-7966-1466
  • Maria Tamara de Moraes Guimaraes Silva Goiás Federal Institute
  • Edwin Fabian Garcia-Aristizabal University of Antioquia
  • Edier Vicente Aristizabal-Giraldo Universidad Nacional de Colombia
  • Mayra Alejandra Larios-Benavides Universidad Nacional de Colombia

A natural phenomenon (hazard) may be characterized in terms of temporal, spatial and magnitude probabilities. The effects of the interaction between the hazard and the exposed element depend on the intensity of the hazard and on the resistance, sometimes called susceptibility, of the element at risk, which describes the propensity of a building or other infrastructure to suffer damage from a specific hazard impact. Consequently, a modern concept of vulnerability must consider the intensity of the hazard as well as the structural resistance of the exposed infrastructure. This concept is referred to as physical vulnerability, and the most accepted definition is a representation of the expected degree of loss quantified on a scale of 0 (no damage) to 1 (total destruction). Thus, this work presents a mathematical model for landslide physical vulnerability assessment, here named the T-Model, based on the “Principle of Natural Proportionality” and calibrated with field observations of the massive rainfall-triggered landslide event that occurred in Nova Friburgo, Brazil in November of 2011. The model was also calibrated for a flow-type movement that is based on field observations of the failure of a tailing dam that affected the district of Bento Rodrigues, Brazil in November of 2015. The results showed a good agreement between predictions and the observed level of damages. Thus, it is possible to conclude that from a mathematical point of view, the model may be qualified as universal. It is recognized that a real universal objective model for vulnerability to landslides is not practical at present. More important than the model itself is the methodology that is presented here, which leads the user to take qualitative damage information from the field and develop it into a quantitative mathematical framework. Potential users of the T-Model must be cautious regarding the values of parameters that are presented in this paper. The T-Model is just a modest proposal that requires further calibration and deep expert criticisms.

Un fenómeno natural (peligro) puede caracterizarse en términos de probabilidades temporales, espaciales y de magnitud. Los efectos de la interacción entre el peligro y el elemento expuesto dependen de la intensidad del peligro y de la resistencia, a veces llamada susceptibilidad, del elemento en riesgo, que describe la propensión de un edificio u otra infraestructura a sufrir daños de un peligro especìfico. En consecuencia, un concepto moderno de vulnerabilidad debe considerar la intensidad del peligro así como la resistencia estructural de la infraestructura expuesta. Este concepto se conoce como vulnerabilidad física, y la definición más aceptada es una representación del grado de pérdida esperado cuantificado en una escala de 0 (sin daño) a 1 (destrucción total). Por lo tanto, este trabajo presenta un modelo matemático para la evaluación de la vulnerabilidad física por deslizamientos, aquí denominado el modelo T, basado en el "Principio de proporcionalidad natural" y calibrado con observaciones de campo del evento de deslizamientos provocado por la lluvis intensa que tuvo lugar en Nova Friburgo, Brasil en noviembre de 2011. El modelo también fue calibrado para un movimiento de flujo a partir de observaciones de campo de la falla de una presa de relaves que afectó al distrito de Bento Rodrigues, Brasil en noviembre de 2015. Los resultados mostraron un buen ajuste entre las predicciones y el nivel observado de daños. Por lo tanto, es posible concluir que desde un punto de vista matemático, el modelo puede calificarse como universal. Se reconoce que un modelo objetivo universal real para la vulnerabilidad a los deslizamientos de tierra no es práctico en la actualidad. Más importante que el modelo en sí es la metodología que se presenta aquí, que conduce al usuario a tomar información de daños cualitativos del campo y desarrollarla en un marco matemático cuantitativo. Los usuarios potenciales del modelo T deben ser cautelosos con respecto a los valores de los parámetros que se presentan en este documento. El modelo T es solo una propuesta modesta que requiere una mayor calibración y profundas críticas de expertos.

References

Aristizábal-Giraldo, E. V. (2008). Characteristics, Dynamic and Causes of the El Socorro Landslide (May 31, 2008) in Medellín, Colombia (in Spanish). Revista EIA, 10, 19–29.

Aristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., & Guerra, A. (2011). Analysis of Empirical Rainfall Thresholds for the Prognosis of Lanslides in the Aburrá Valley, Colombia. Revista EIA, 8(15), 95–111.

Bell, R., & Glade, T. (2004). Quantitative Risk Analysis for Landslides; Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Science, 4(1), 117–31. https://doi.org/10.5194/nhess-4-117-2004.

Birkmann, J., Cardona, O. D., Carreno, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., & Kienberger, S. (2013). Framing Vulnerability, Risk and Societal Responses: The MOVE Framework. Natural Hazards, 67(2), 193–211. https://doi.org/10.1007/s11069-013-0558-5.

Ciurean, R. L., & Dagmar, S. (2013). Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In: Intech (Eds) Science, Technology & Medicine Open Access Book Publisher, 32.

Claghorn, J., Orsini, F. M., Echeverri-Restrepo, C. A., & Werthmann, C. (2016). Rehabitar La Montaña : Strategies and Processes for Sustainable Communities in the Mountainous Periphery of Medellín. Brazilian Journal of Urban Management, 8(1), 42–60. https://doi.org/10.1590/2175-3369.008.001.SE03.

Corominas, J., Copons, R., Vilaplana, J. M., Altimir, J., & Amigó, J. (2003). Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra. Natural Hazards, 30, 421–435.

Entralgo, J. F. T. (2013). Análise Espacial E Estatística Dos Movimentos de Massa Deflagrados Pelas Chuvas Dos Dias 11 E 12 de Janeiro de 2011 Na Região Serrana Do Estado Do Rio de Janeiro, Brasil. University of Brasilia.

Fell, R., Ho, K. K. S., Lacasse, S., & Leroi, E. (2005). State of the Art Paper 1 A Framework for Landslide Risk Assessment and Management. International Conference on Landslide Risk Management, Vancouver, Canada, Vol. 31.

Fuchs, S., Heiss, K. & Hübl, J. (2007). Towards an Empirical Vulnerability Function for Use in Debris Flow Risk Assessment. Natural Hazards and Earth System Science, 7(5), 495–506. https://doi.org/10.5194/nhess-7-495-2007.

Glade, T., Anderson, M., & Crozier, M. J. (2005). Landslide Hazard and Risk.

Guimaraes-Silva, M. T. M. (2015). Avaliação Quantitativa Da Vulnerabilidade de Edificações Associada a Processos de Deslizamentos de Encostas. Tese de Doutorado, Publicação G.TD - 113/15, Departamento de Engenharia Civil E Ambiental, Universidade de Brasília, Brasília, DF, 105 P.

Hollenstein, K. (2005). Reconsidering the Risk Assessment Concept: Standardizing the Impact Description as a Building Block for Vulnerability Assessment. Natural Hazards and Earth System Science 5(3), 301–307. https://doi.org/10.5194/nhess-5-301-2005.

Hungr, O. (1995). A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches. Canadian Geotechnical Journal. https://doi.org/10.1139/t95-063.

Iverson, R. M., Logan, M., & Denlinger, R. P. (2004). Granular Avalanches across Irregular Three-Dimensional Terrain: 2. Experimental Tests. Journal of Geophysical Research, 109, 1–16. https://doi.org/10.1029/2003JF000084.

Jaiswal, P., van Westen, C. J. & Jetten, V. (2010). Quantitative Landslide Hazard Assessment along a Transportation Corridor in Southern India. Engineering Geology 116 (3–4), 236–250. https://doi.org/10.1016/j.enggeo.2010.09.005.

Juarez-Badillo, E. (1985). General Volumetric Constitutive Equation for Geomaterials. In: XI Internacional Conference on Soil Mechanics and Foundation Engineering. Special Volume on Constitutive Laws of Soils. Edited by Japanese Society of Soil Mechanics and Foundations. San Francisco, CA, USA.

Chu, J., & Leong, W. K. (1997). Static Liquefaction of Very Loose Sands: Discussion. Canadian Geotechnical Journal, 34(6), 905–917. https://doi.org/10.1139/t99-027.

Kang, H. & Kim, Y. T. (2015). The Physical Vulnerability of Different Types of Building Structure to Debris Flow Events. Natural Hazards. https://doi.org/10.1007/s11069-015-2032-z.

Klose, M., Maurischat, P., & Damm, B. (2015). Landslide Impacts in Germany: A Historical and Socioeconomic Perspective. Landslides, no. November 2014, 183–99. https://doi.org/10.1007/s10346-015-0643-9.

Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards. Landslides, 7(2), 125–34. https://doi.org/10.1007/s10346-009-0190-3.

Liu, X. & Lei, J. (2003). A Method for Assessing Regional Debris Flow Risk: An Application in Zhaotong of Yunnan Province (SW China). 52, 181–191. https://doi.org/10.1016/S0169-555X(02)00242-8.

Llano-Serna, M. A., Farias, M. M. & Martínez-Carvajal, H. E. (2015). Numerical Modelling of Alto Verde Landslide Using the Material Point Method. Dyna, 82, 150–159. https://doi.org/10.15446/dyna.v82n194.48179.

Margottini, C., Canuti, P. & Sassa, K. (2013). Landslide Science and Practice. Vol. 4. Rome, Italy: Springer Netherlands.

Mergili, M., Fellin, W., Moreiras, S. & Stötter, J. (2012). Simulation of Debris Flows in the Central Andes Based on Open Source GIS: Possibilities, Limitations, and Parameter Sensitivity. Natural Hazards, 61(3), 1051–1081. https://doi.org/10.1007/s11069-011-9965-7.

Nicu, I. C. (2016). Cultural heritage assessment and vulnerability using Analytic Hierarchy Process and Geographic Information Systems (Valea Oii catchment, North-eastern Romania). An approach to historical maps. International Journal of Disaster Risk Reduction 20, 103–111. doi:10.1016/j.ijdrr.2016.10.015.

Nicu, I. C. (2018). Natural risk assessment and mitigation of cultural heritage sites in North-eastern Romania (Valea Oii river basin). Area. doi:10.1111/area.12433 (accepted, in press).

Nocentini, M., Tofani, V., Gigli, G., Fidolini, F., & Casagli, N. (2015). Modeling Debris Flows in Volcanic Terrains for Hazard Mapping: The Case Study of Ischia Island (Italy). Landslides, 12(5), 831–46. https://doi.org/10.1007/s10346-014-0524-7.

O’Brien, K.; Eriksen, S.; Nygaard, L. P. & Schjolden, A. (2007). Why Different Interpretations of Vulnerability Matter in Climate Change Discourses. Climate Policy, 7(1), 73–88. https://doi.org/10.1080/14693062.2007.9685639.

Pascale, S., Sdao, F., & Sole, A. (2010). A Model for Assessing the Systemic Vulnerability in Landslide Prone Areas. Natural Hazards and Earth System Science, 10(7), 1575–1590. https://doi.org/10.5194/nhess-10-1575-2010.

Quan-Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J. & Akbas, S. O. (2011). The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves. Natural Hazards and Earth System Science, 11(7), 2047–2060. https://doi.org/10.5194/nhess-11-2047-2011.

Totschnig, R. & Fuchs, S. (2013). Mountain Torrents: Quantifying Vulnerability and Assessing Uncertainties. Engineering Geology, 155, 31–44. https://doi.org/10.1016/j.enggeo.2012.12.019.

Unesco. (1979). Natural Disasters and Vulnerability Analysis. UNDRO. New York: UNESCO.

Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A Conceptual Framework for Quantitative Estimation of Physical Vulnerability to Landslides. Engineering Geology, 102(3–4), 251–256. https://doi.org/10.1016/j.enggeo.2008.03.011.

van Westen, C. J., van Asch, T. W. J. & Soeters, R. (2006). Landslide Hazard and Risk Zonation—why Is It Still so Difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–84. https://doi.org/10.1007/s10064-005-0023-0.

van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30, 399–419.

Zêzere, J. L., Garcia, R., Oliveira, S. C. & Reis, E. (2008). Probabilistic Landslide Risk Analysis Considering Direct Costs in the Area North of Lisbon (Portugal). Geomorphology, 94, 467–495. https://doi.org/10.1016/j.geomorph.2006.10.040.

How to Cite

APA

Martinez-Carvajal, H. E., de Moraes Guimaraes Silva, M. T., Garcia-Aristizabal, E. F., Aristizabal-Giraldo, E. V. and Larios-Benavides, M. A. (2018). A mathematical approach for assessing landslide vulnerability. Earth Sciences Research Journal, 22(4), 251–273. https://doi.org/10.15446/esrj.v22n4.68553

ACM

[1]
Martinez-Carvajal, H.E., de Moraes Guimaraes Silva, M.T., Garcia-Aristizabal, E.F., Aristizabal-Giraldo, E.V. and Larios-Benavides, M.A. 2018. A mathematical approach for assessing landslide vulnerability. Earth Sciences Research Journal. 22, 4 (Oct. 2018), 251–273. DOI:https://doi.org/10.15446/esrj.v22n4.68553.

ACS

(1)
Martinez-Carvajal, H. E.; de Moraes Guimaraes Silva, M. T.; Garcia-Aristizabal, E. F.; Aristizabal-Giraldo, E. V.; Larios-Benavides, M. A. A mathematical approach for assessing landslide vulnerability. Earth sci. res. j. 2018, 22, 251-273.

ABNT

MARTINEZ-CARVAJAL, H. E.; DE MORAES GUIMARAES SILVA, M. T.; GARCIA-ARISTIZABAL, E. F.; ARISTIZABAL-GIRALDO, E. V.; LARIOS-BENAVIDES, M. A. A mathematical approach for assessing landslide vulnerability. Earth Sciences Research Journal, [S. l.], v. 22, n. 4, p. 251–273, 2018. DOI: 10.15446/esrj.v22n4.68553. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/68553. Acesso em: 22 apr. 2025.

Chicago

Martinez-Carvajal, Hernan Eduardo, Maria Tamara de Moraes Guimaraes Silva, Edwin Fabian Garcia-Aristizabal, Edier Vicente Aristizabal-Giraldo, and Mayra Alejandra Larios-Benavides. 2018. “A mathematical approach for assessing landslide vulnerability”. Earth Sciences Research Journal 22 (4):251-73. https://doi.org/10.15446/esrj.v22n4.68553.

Harvard

Martinez-Carvajal, H. E., de Moraes Guimaraes Silva, M. T., Garcia-Aristizabal, E. F., Aristizabal-Giraldo, E. V. and Larios-Benavides, M. A. (2018) “A mathematical approach for assessing landslide vulnerability”, Earth Sciences Research Journal, 22(4), pp. 251–273. doi: 10.15446/esrj.v22n4.68553.

IEEE

[1]
H. E. Martinez-Carvajal, M. T. de Moraes Guimaraes Silva, E. F. Garcia-Aristizabal, E. V. Aristizabal-Giraldo, and M. A. Larios-Benavides, “A mathematical approach for assessing landslide vulnerability”, Earth sci. res. j., vol. 22, no. 4, pp. 251–273, Oct. 2018.

MLA

Martinez-Carvajal, H. E., M. T. de Moraes Guimaraes Silva, E. F. Garcia-Aristizabal, E. V. Aristizabal-Giraldo, and M. A. Larios-Benavides. “A mathematical approach for assessing landslide vulnerability”. Earth Sciences Research Journal, vol. 22, no. 4, Oct. 2018, pp. 251-73, doi:10.15446/esrj.v22n4.68553.

Turabian

Martinez-Carvajal, Hernan Eduardo, Maria Tamara de Moraes Guimaraes Silva, Edwin Fabian Garcia-Aristizabal, Edier Vicente Aristizabal-Giraldo, and Mayra Alejandra Larios-Benavides. “A mathematical approach for assessing landslide vulnerability”. Earth Sciences Research Journal 22, no. 4 (October 1, 2018): 251–273. Accessed April 22, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/68553.

Vancouver

1.
Martinez-Carvajal HE, de Moraes Guimaraes Silva MT, Garcia-Aristizabal EF, Aristizabal-Giraldo EV, Larios-Benavides MA. A mathematical approach for assessing landslide vulnerability. Earth sci. res. j. [Internet]. 2018 Oct. 1 [cited 2025 Apr. 22];22(4):251-73. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/68553

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Chu Jian, Jun Li, Changsheng Shao. (2021). Gravity anomaly characteristics and basin geological structure in Wan’an Basin. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07515-3.

2. Xun Huang, Zhijian Zhang, Guoping Xiang. (2023). Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations. Natural Hazards and Earth System Sciences, 23(2), p.871. https://doi.org/10.5194/nhess-23-871-2023.

3. Roberto J. Marin, María Fernanda Velásquez, Edwin F. García, Massimiliano Alvioli, Edier Aristizábal. (2021). Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. CATENA, 206, p.105563. https://doi.org/10.1016/j.catena.2021.105563.

4. María Isabel Hurtado, Johnny Alexander Vega, César Augusto Hidalgo. (2020). Comparison of Geometric and Experimental Models for the Assessment of the Runout and Deposition Height of a Debris Flow in Cohesive Soils. IOP Conference Series: Materials Science and Engineering, 960(2), p.022027. https://doi.org/10.1088/1757-899X/960/2/022027.

5. LUIS CARLOS LEGUIZAMÓN BARRETO, JULY ROJAS. (2021). A review of the relation between climate variability and mass removal processes. Ingeniería Solidaria, 17(1), p.1. https://doi.org/10.16925/2357-6014.2021.01.03.

6. Siyi Huang, Hongqiang Dou, Wenbin Jian, Chaoxu Guo, Yongxin Sun. (2023). Spatial prediction of the geological hazard vulnerability of mountain road network using machine learning algorithms. Geomatics, Natural Hazards and Risk, 14(1) https://doi.org/10.1080/19475705.2023.2170832.

Dimensions

PlumX

Article abstract page views

715

Downloads

Download data is not yet available.