Published

2018-07-01

Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations

Caracterización biológica y geológica de biopelículas y tapetes microbianos actuales y comparación con estructuras litificadas similares en formaciones cretácicas de Colombia

DOI:

https://doi.org/10.15446/esrj.v22n3.68839

Keywords:

Cyanobacterium, extracellular polymeric substances (EPS), microbially-induced sedimentary structures (MISS), biosignature, geobiology. (en)
Cianobacteria, sustancias poliméricas extracelulares (EPS), estructuras sedimentarias inducidas por microorganismos (MISS), biofirma, geobiología. (es)

Downloads

Authors

Microorganisms may play an important role in the aggregation of sediments and the formation of sedimentary structures. Biofilms are microbial aggregates that, in a mature stage, can develop into microbial mats, fibrillar networks that irreversibly bind filaments of cyanobacteria and sediments, inside which it has been identified a stratification with functional groups of microorganisms that coexist, generate symbiotic relationships and potentially modify the characteristics of sediments and sedimentary rocks, particularly in extreme environments. In this work, filamentous cyanobacteria from biofilms of a lacustrine environment with intervals of flooding/desiccation and a saline environment, and a microbial mat from the Agua Caliente Thermal, El Rosal, Cundinamarca, are identified. In the biofilms, most cyanobacteria were found to belong to the Orden Oscillatoriales, while in the microbial mat cyanobacteria of the order Orden Nostocales were also recognized. Two rock samples isolated from the thermal which genesis was possibly influenced by the activity of cyanobacteria are described and classified. One of them, named R-1, is a calcareous rock inside which it was possible to differentiate biolaminations and an apparent dominance of biomineralization processes. This sample was both classified as a travertine and a microbial framestone with stromatolitic and thrombolytic texture. The second one, called R-2, is a siliciclastic rock classified as a mudstone and a microbial boundstone. Finally, a comparison between the sedimentary structures identified in those rocks with similar structures in the formations La Luna, Paja and Tetuán and the microbially-induced sedimentary structures (MISS) described in the literature is performed. Based on morphological resemblance, fibrillar networks identified locally in those formations are interpreted as possible biolaminations originated from the activity of cyanobacteria.

Los microorganismos pueden jugar un rol importante en la cohesión de los sedimentos y la formación de estructuras sedimentarias. Las biopelículas son agregados microbianos que en una etapa madura pueden formar tapetes microbianos, redes fibrilares que unen irreversiblemente filamentos de cianobacterias y sedimentos, dentro de los que se ha identificado una estratificación con grupos funcionales de microorganismos que coexisten, forman relaciones simbióticas y potencialmente modifican las características de los sedimentos y las rocas sedimentarias, particularmente en ambientes extremos. En el presente trabajo se identifican las cianobacterias filamentosas en biopelículas de un ambiente lacustre con intervalos de inundación/desecación y de un ambiente salino, y un tapete microbiano aislado de la Termal Agua Caliente, El Rosal, Cundinamarca. En las biopelículas se reconocen principalmente cianobacterias del Orden Oscillatoriales, mientras que en el tapete microbiano se encuentran adicionalmente cianobacterias del Orden Nostocales. Se describen y clasifican dos muestras de roca aisladas de la termal cuya génesis posiblemente estuvo influenciada por la actividad de cianobacterias. Una de ellas, denominada R-1, es una roca de composición calcárea dentro de la que se pudieron diferenciar bioláminas y una aparente predominancia de biomineralización. Esta muestra se clasificó simultáneamente como un travertino y una “framestone” microbiana con textura estromatolítica y trombolítica. La segunda, nombrada R-2, es una roca siliciclástica clasificada como una lodolita y una “boundstone” microbiana. Finalmente, se realiza una comparación entre las estructuras sedimentarias identificadas en dichas rocas con estructuras similares en las formaciones La Luna, Tetuán y Paja y las estructuras sedimentarias inducidas por microorganismos (MISS) descritas en la literatura. Con base en las similitudes morfológicas, las redes fibrilares identificadas de manera localizada en dichas formaciones se interpretan como posibles bioláminas originadas por la actividad de cianobacterias.   

References

Aitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163–1178.

Braga, J. C., Martín, J. M. & Riding, R. (1995). Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. Palaios, 10, 347–361.

Bucaria R. & Bebout B. (2017). Interactive Biogeochemical Cycle. http://teachersinstitute.yale.edu/curriculum/units/2010/3/10.03.04.x.html (last accessed, September 2017).

Burne, R. V. & Moore, L. (1987). Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2, 3, 231-254.

Castenholz, R. W. (1994). Microbial mat research: the recent past and new perspectives. In L. J. Stal & P. Caumette (Eds.), Microbial mats. Structure, Development and Environmental Significance (3-18). Springer-Verlag, Berlín Heidelberg.

Castenholz, R. W. (2002). ‘Cyanobacteria’. In D. Boone & R. W. Castenholz (Eds.), Bergey’s Manual of Systematic Bacteriology, Vol. 1, 2nd Ed. (473-599). Williams and Wilkins, Baltimore, MD.

Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews of Microbiology, 49, 711-745.

Cuadrado, D. G., Bournod, C. N., Pan, J. & Carmona, N. B. (2013). Microbially-induced sedimentary structures (MISS) as record of storm action in supratidal modern estuarine setting. Sedimentary Geology, 296, 1-8.

Cuadrado, D. G., Pan, J., Gómez, E. A. & Maisano, L. (2015). Deformed microbial mat structures in a semiarid temperate coastal setting. Sedimentary Geology, 325, 106-118.

De Porta, J. (1966). Geología del extremo sur del Valle Medio del Magdalena entre Honda y Guataquí. Boletín de Geología, 22-23, 1-347.

Decho, A. W. (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf Research, 20, 1257–1273.

Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. In W. E. Ham (Ed,), Classification of Carbonate Rocks (108-121). American Association of Petroleum Geologists, Tulsa.

Embry III, A. F. & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19, 4, 730-781.

Farmer, J. D. & Des Marais, D. J. (1999). Exploring for a record of ancient martian life. Journal of Geophysical Research, 104, 26977–26995.

Folk, R. L. (1959). Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin, 43(1), 1-38.

Foster, J. S. & Mobberley, J. (2010). Past, Present and Future: Microbial Mats as Models for Astrobiological Research. In J. Seckbach & A. Oren (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems (565-582). Springer, Heidelberg.

Gaviria, N. E. (2016). Estratigrafía, geoquímica y análisis de foraminíferos de la formación Tetuán en el área de la Quebrada motilona (Paicol - Huila). B.Sc. Thesis, School of Geosciences, National University of Colombia, Bogotá, Colombia.

Gerdes, G. (2007). Chapter 2. Structures Left Modern Microbial Mats in Their Host Sediments. In J. Schieber, P. K. Bose, P. G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, & O. Catuneanu (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record (5-38). Elsevier Science, London.

Gerdes, G. (2010). What Are Microbial Mats? In J. Seckbach & A. Oren (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems (5-25). Springer, Heidelberg.

Golubic, S., Seong-Joo, L. & Browne, K. M. (2000). Cyanobacteria: Architects of Sedimentary Structures. In: R. E. Riding & S. M. Awramik (Eds.), Microbial Sediments (57-67). Springer-Verlag, Berlín Heidelberg.

Guerrero, J., Sarmiento, G. & Navarrete, R. (2000). The stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana. 25, 45 – 110.

Kalkowsky, E. (1908). Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der deutschen geologischen Gesellschaft. 60, 68–125.

Komárek, J., Kastovsky, J., Mares, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 4, 295-335.

Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil/ 2nd Part: Oscillatoriales. In B. Büdel, L. Krienitz, G. Gärtner & M. Schagerl (Eds.), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg, 759 pp.

Krumbein, W. E., Brehm, U., Gerdes, G., Gorbushina, A. A., Levit, G. & Palinska, K. A. (2003). Biofilm, biodictyon, biomat microbialite, oolites, stromatolites – geophysiology, global mechanisms and parahistology. In W. E. Krumbein, D. M. Paterson & G. A. Zavarzin (Eds.), Fossil and Recent Biofilms (1-28). Kluwer Academic Publishers, Dordrecht.

Marshall, K. C. (1992). Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. American Society for Microbiology News, 58, 202- 207.

Mount, J. (1985). Mixed siliciclastic and carbonate sediments: a proposed first‐order textural and compositional classification. Sedimentology, 32, 3, 435-442.

Neu, T. R., Eitner, A. & Paje, M. L. (2003). Development and architecture of complex environmental biofilms. In W. E. Krumbein, D. M. Paterson & G. A. Zavarzin (Eds.), Fossil and Recent Biofilms (29-45), Kluwer Academic Publishers, Dordrecht.

Nicholson, J. A. M, Stolz, J. F. & Pierson, B. K. (1987). Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiology Ecology, 45, 343–364.

Noffke, N. (2009). The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Science Reviews, 96, 173–180.

Noffke, N. (2010). Geobiology. Microbial Mats in Sandy Deposits from the Archaean Era to Today. Springer-Verlag. Berlín Heidelberg, 194 pp.

Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. E. (1996). Microbially induced sedimentary structures-examples from modem sediments of siliciclastic tidal flats. Zbl Geol Palfiont Tell I, 1, 307– 316.

Pentecost, A. (2005). Travertine. Springer. Netherlands, 445 pp.

Riding, R. (1991). Classification of microbial carbonates. In R. Riding (Ed.). Calcareous Algae and Stromatolites (21-51). Springer-Verlag, Berlin.

Sarmiento, G., Puentes, E. J. & Sierra, C. (2015). Estratigrafía y Petrofacies de la Formación La Luna en el Sinclinal de Nuevo Mundo, Valle Medio del Magdalena. Geología Norandina, 12, 21-40.

Schieber, J. (1986). The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid‐Proterozoic basins. Sedimentology, 33, 4, 521-536.

Schieber, J. (2004). Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller & O. Catuneanu (Eds.), The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology (663-673). v. 12. Elsevier, Amsterdam.

Schieber J. (2007). Chapter 5. Microbial Mats in Muddy Substrates – Examples of Possible Sedimentary Features and Underlying Processes. In J. Schieber, P. K. Bose, P. G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, & O. Catuneanu (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record (117-134). Elsevier Science, London.

Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneanu, O. (2007). Prologue: An Introduction to Microbial Mats. In J. Schieber, P.K. Bose, P. G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, & O. Catuneanu (Eds.), Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record, Elsevier Science, London, 1-3.

Seckbach, J. & Oren, A. (2010). Preface. J. Seckbach & A. Oren (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems (1-3). Springer, Heidelberg.

Stal, L. J. (1994). Microbial mats in coastal environments. In L. J. Stal & P. Caumette (Eds.), Microbial mats. Structure, Development and Environmental Significance (21-32). Springer-Verlag, Berlín Heidelberg.

Stal, L. J. (2012). Cyanobacterial Mats and Stromatolites. In B. A. Whitton (Ed.), Ecology of Cyanobacteria II: Their Diversity in Space and Time (65-125). Springer, Netherlands.

Stolz, J. (2000). Structure of Microbial Mats and Biofilms. In R. E. Riding & S. M. Awramik (Eds.), Microbial Sediments (1-8). Springer-Verlag, Berlín Heidelberg.

Summons, R. E., Amend, J. P., Bish, D., Buick, R., Cody, G. D., Des Marais, D. J., Dromart, G., Eigenbrode, J. L., Knoll, A. H. & Sumner, D. Y. (2011). Preservation of martian organic and environmental records: final report of the Mars Biosignature Working group. Astrobiology, 11, 157-181.

Ujueta G. (1960). Yacimientos Minerales de Villa de Leyva, depto. de Boyacá. Ministerio de Minas y Petróleos. National Geologic Service, Informe No. 1363. Investigaciones de Geología Económica.

Ulmer-Scholle, D. S., Scholle P. A., Schieber, J. & Raine, R. J. (2014). Memoir 109: A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. American Association of Petroleum Geologists, Tulsa, 526 pp.

Vargas, M. (2013). Caracterización Geológica del travertino localizado al noroccidente del municipio de Pesca, Boyacá. B.Sc. Thesis, School of Geosciences, National University of Colombia, Bogotá, Colombia.

Visscher, P. T., Prins, R. A. & Van Gemerden, H. (1992). Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 86, 283–293.

Westall, F. (2008). Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Science Reviews, 135, 1, 95-114.

Westall, F. & Cavalazzi, B. (2011). Biosignatures in rocks. In V. Thiel & J. Reitner (Eds.), Encyclopedia of Geobiology (189-201). Springer, Berlin.

How to Cite

APA

Osorio-Rodriguez, D. and Sanchez-Quiñónez, C. A. (2018). Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations. Earth Sciences Research Journal, 22(3), 159–168. https://doi.org/10.15446/esrj.v22n3.68839

ACM

[1]
Osorio-Rodriguez, D. and Sanchez-Quiñónez, C.A. 2018. Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations. Earth Sciences Research Journal. 22, 3 (Jul. 2018), 159–168. DOI:https://doi.org/10.15446/esrj.v22n3.68839.

ACS

(1)
Osorio-Rodriguez, D.; Sanchez-Quiñónez, C. A. Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations. Earth sci. res. j. 2018, 22, 159-168.

ABNT

OSORIO-RODRIGUEZ, D.; SANCHEZ-QUIÑÓNEZ, C. A. Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations. Earth Sciences Research Journal, [S. l.], v. 22, n. 3, p. 159–168, 2018. DOI: 10.15446/esrj.v22n3.68839. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/68839. Acesso em: 20 aug. 2024.

Chicago

Osorio-Rodriguez, Daniela, and Carlos Alberto Sanchez-Quiñónez. 2018. “Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations”. Earth Sciences Research Journal 22 (3):159-68. https://doi.org/10.15446/esrj.v22n3.68839.

Harvard

Osorio-Rodriguez, D. and Sanchez-Quiñónez, C. A. (2018) “Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations”, Earth Sciences Research Journal, 22(3), pp. 159–168. doi: 10.15446/esrj.v22n3.68839.

IEEE

[1]
D. Osorio-Rodriguez and C. A. Sanchez-Quiñónez, “Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations”, Earth sci. res. j., vol. 22, no. 3, pp. 159–168, Jul. 2018.

MLA

Osorio-Rodriguez, D., and C. A. Sanchez-Quiñónez. “Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations”. Earth Sciences Research Journal, vol. 22, no. 3, July 2018, pp. 159-68, doi:10.15446/esrj.v22n3.68839.

Turabian

Osorio-Rodriguez, Daniela, and Carlos Alberto Sanchez-Quiñónez. “Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations”. Earth Sciences Research Journal 22, no. 3 (July 1, 2018): 159–168. Accessed August 20, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/68839.

Vancouver

1.
Osorio-Rodriguez D, Sanchez-Quiñónez CA. Biological and geological characterization of modern biofilms and microbial mats and comparison with similar lithified structures in Colombian Cretaceous formations. Earth sci. res. j. [Internet]. 2018 Jul. 1 [cited 2024 Aug. 20];22(3):159-68. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/68839

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

819

Downloads

Download data is not yet available.