Published
On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures
Sobre la influencia de la distribución espacial del contenido de finos en la conductividad hidráulica de mezclas areno-arcillosas
DOI:
https://doi.org/10.15446/esrj.v22n4.69332Keywords:
Sand -clay mixtures, permeability, groundwater flow (en)mezclas areno-arcillosas, permeabilidad, flujo de agua subterranea (es)
Downloads
Sand-clay mixtures are one of the most usual types of soils in geotechnical engineering. These soils present a hydraulic conductivity which highly depends on the fine content. In this work, it will be shown, that not only the mean fine content of a soil sample affects its hydraulic conductivity, but also its spatial distribution within the sample. For this purpose, a set of hydraulic conductivity tests with sand-clay mixtures have been conducted to propose an empirical relation of the hydraulic conductivity depending on the fine content. Then, a numerical model of a large scaled hydraulic conductivity test is constructed. In this model, the heterogeneity of the fine content is simulated following a Gaussian distribution. The equivalent hydraulic conductivity resulting of the whole model is then computed and the influence of the spatial distribution of the fine content is evaluated. The results indicate that the hydraulic conductivity is not only related to the mean fine content, but also on its heterogeneity.
References
Al-Tabbaa, A., & Wood, D. M. (1987). Some measurements of the permeability of kaolin. Géotechnique, 37(4), 499–503.
Alyamani, M. S., & Şen, Z. (1993). Determination of Hydraulic Conductivity from Complete Grain‐Size Distribution Curves. Groundwater, 31(4), 551–555.
Amer, M., Asce, M., Amin, & Awad, A. (1974). Permeability of cohesionless soils. Journal of the Geotechnical Engineering Division, 100(12), 1039–1316.
Bardet, J.-P. (1997). Experimental Soil Mechanics. Pearson.
Belkhatir, M., Schanz, T., Arab, A., & Della, N. (2014). Experimental Study on the Pore Water Pressure Generation Characteristics of Saturated Silty Sands. Arabian Journal for Science and Engineering, 39(8), 6055–6067.
Biernatowski, K., E. Dembicki, W., Dzierżawski, K., & Wolski, W. (1987). Foundation engineering. Design and execution. Warszawa: Arkady.
Chapius, R. P. (1990). Sand-bentonite liners: predicting the permeability from laboratory tests. NRC Research Press Journals National Research Council Canada, 27(1), 47–57.
Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41(5), 787–795.
Dassault Systèmes. (2016). Abaqus Theory manual 6.14.
Deng, Y., Wu, Z., Cui, Y., Liu, S., & Wang, Q. (2017). Sand fraction effect on hydro-mechanical behavior of sand-clay mixture. Applied Clay Science, 135, 355–361.
Hazen, A. (1911). Discussions of dams on sand foundations. Transactions of the American Society of Civil Engineers, LXXIII(3), 190–207.
Indrawan, I. G. B., Rahardjo, H., & Leong, E. C. (2006). Effects of coarse-grained materials on properties of residual soil. Engineering Geology, 82(3), 154–164.
INVIAS. (2013). Sección 200. Manual de Normas de Ensayos de Materiales Para Carretereas, 342.
Kenney, T. C., Lau, D., & Ofoegbu, G. I. (1984). Permeability of compacted granular materials. Canadian Geotechnical Journal, 21(4), 726–729.
Kenney, T. C., Veen, W. a. Van, Swallow, M. a., & Sungaila, M. a. (1992). Hydraulic conductivity of compacted bentonite–sand mixtures. Canadian Geotechnical Journal, 29(3), 364–374.
Kollis, W. (1966). Technical soil knowledge. Warszawa: Arkady.
Kumar, G. V. (1996). Some Aspects of The Mechanical Behavior of Mixtures of Kaolin and Coarse Sand, PhD Thesis. University of Glasgow.
Loudon, a. G. (1952). The Computation of Permeability from Simple Soil Tests. Géotechnique, 3(4), 165–183.
Mesri, G., & Olson, R. E. (1971). Mechanisms controlling the permeability of clays. Clays and Clay Minerals, 19(3), 151–158.
Nagaraj, T. S., Pandian, N. S., & Raju, P. S. R. N. (1994). Stress-state—permeability relations for overconsolidated clays. Géotechnique, 44(2), 349–352.
Odong, J. (2007). Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, 3(3), 54–60.
Pazdro, Z. (1983). General hydrogeology Wyd. Geol. Warszawa.
Samarasinghe, A. M., Huang, Y. H., & Drnevich, V. P. (1982). PERMEABILITY AND CONSOLIDATION OF NORMALLY CONSOLIDATED SOILS. Journal of the Geotechnical Engineering Division, 108(Compendex), 835–850.
Shafiee, A. (2008). Permeability of compacted granule-clay mixtures. Engineering Geology, 97(3–4), 199–208.
Shakoor, A., Cook, B. D. (1990). The effect of stone content, size and shape on engineering. Association of Engineering Geologists, (27), 245–253.
Shelley, T. L., & Daniel, D. E. (1993). Effect of Gravel on Hydraulic Conductivity of Compacted Soil Liners. Journal of Geotechnical Engineering, 119(1), 54–68.
Tavenas, F., Leblond, P., Jean, P., & Leroueil, S. (1983). The permeability of natural soft clays. Part I: Methods of laboratory measurement. Canadian Geotechnical Journal, 20(4), 629–644.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Puneet Bhaskar, Burak Boluk, Leila Mosadegh, Aritra Banerjee, Anand J. Puppala. (2020). Effect of Fines on Hysteretic Hydraulic Conductivity of Unsaturated Soil. Geo-Congress 2020. , p.330. https://doi.org/10.1061/9780784482827.037.
2. Ammar El-Husseiny. (2021). Unified Packing Model for Improved Prediction of Porosity and Hydraulic Conductivity of Binary Mixed Soils. Water, 13(4), p.455. https://doi.org/10.3390/w13040455.
3. Tiago Feitosa Gondim, Maria del Pilar Durante Ingunza, Osvaldo de Freitas Neto, Olavo Francisco dos Santos Júnior. (2022). Potencialidade de uso do resíduo da scheelita em sistemas de cobertura de aterro de resíduos. Engenharia Sanitaria e Ambiental, 27(3), p.597. https://doi.org/10.1590/s1413-415220200073.
4. Salima Bouchemella, Said Taibi. (2022). Effect of suction on the mechanical behaviour of unsaturated compacted clay–sand mixtures. Studia Geotechnica et Mechanica, 44(3), p.175. https://doi.org/10.2478/sgem-2022-0016.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.